FALL 2007 PRELIMINARY EXAMINATION SOLUTIONS

1A. Let Z[i] be the set of complex numbers of the form a + bi where a and b range over all
integers. List all subrings of Z[i]. (Your list should contain each subring exactly once.)

Solution: For n € Z>4, let R, = Z 4+ nZi. We claim that Z, Ry, Rs, ...is a list of all
subrings of Z[i].

First, each R; is a subring since it contains 0 and 1 and is closed under negation, addition,
and multiplication. And of course Z is a subring too.

Now we show that any subring R equals either Z or some R,. Any subring R is an
additive subgroup of Z[i] containing Z. The additive subgroups of Z[i] containing 7 are the
inverse images of subgroups of the quotient group Z[i]/Z, which is isomorphic to Z via the
homomorphism sending the class of a + bi to b. The subgroups of Z are {0} and nZ for
n € Z>1, and their inverse images under Z[i| — Z[i|/Z ~ Z are Z and R,,, respectively.

2A. Let f(z) and g(z) be entire functions such that f'(z) = ¢g(z), ¢'(2) = —f(2), and
f(2z) = 2f(2)g(z) for all z € C. Find all possibilities for f(z).

Solution: The first two identities imply f”(z) = —f(z), to which the general solution is
f(z) = ae” + be™** where a,b € C. Conversely, if a,b € C, then the functions f(z) :=
ae” + be™% and g(z) := f'(2) = aie”* — bie™** satisfy the first two identities.

It remains to check which a,b € C lead to the third identity being satisfied. The third
identity says

ae®” + be ?* = 2(ae” + be™ %) (aie” — bie” %)
or equivalently,
(a — 2a%i)e*™ = —b — 2b7i.

This holds for all z € C if and only if @ — 2a? = 0 and —b — 20% = 0. These equations
are equivalent to a € {0,—:/2} and b € {0,7/2}. Thus there are four possibilities for f(z),
namely 0, —ie* /2, ie"** /2, and

—ie” /2 +ie”"* /2 = sin 2.

3A. Let A be an n x n Hermitian matrix, and let £ € C" be a vector such that A%z = 0.
Prove that Ax = 0.

Solution: We have: A%z =0 = A7 Az =0 (since A = A) = 27 A" Az = 0 = || Az|)? =
(Az, Az) = 0= ||Az|| = 0= Az = 0.

4A. Let (ap)n>1 and (b,),>1 be sequences of real numbers. Suppose that 0 < a,41 < a, + b,

for all n > 1, and that Zzozl b, converges. Prove that lim,, .. a, exists and is finite.
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Solution: Fix any e > 0. Since »_ b, converges, there exists N. < oo such that for all
n > N, and all £ > 0, we have |b, + b,y1 + -+ + bpyx| < €. Hence for all n > N, and k > 0,

Apt k41 < an+bn++bn+k
< ap -+ e

Therefore sup a,, < a, + €. Hence limsup a,, < oc.
m>n n—oo
All the a,, except possibly a; are nonnegative, so liminf a,, is finite. Take n; < ns < ...

such that a,, — liminfa,. Then

limsupa, = lim sup a,,
k—oo m>ny

< klim (an, +¢€)
= ¢+ liminf a,.

Sending € to zero shows that limsup a,, < liminf a,,. But limsup a,, > liminf a,, trivially, so
lim sup a,, = liminf a,,. This means that lim a,, exists and is finite.

5A. Suppose that G is a finite group such that for each subgroup H of G there exists a
homomorphism ¢: G — H such that ¢(h) = h for all h € H. Show that G is a product of
groups of prime order.

Solution: We proceed by induction on |G|. The base case |G| = 1 is trivial. Suppose that
|G| > 1 and that the statement is true for all smaller groups. Choose a subgroup H of G
of prime order p. By assumption, there is a homomorphism ¢: G — H such that ¢(h) = h
for all h € H. Let K = ker¢. By the inductive hypothesis, K is a product of groups of
prime order. Let o: G — K be a homomorphism such that o(h) = h for all h € K. Let
a: G — K x H be the homomorphism defined by

a(g) = (a(g), 9(9))-

Since o restricted to ker ¢ equals the identity on K, the kernel of « is trivial. Also |G| =
|K||H|, so « is an isomorphism. The result follows because H has order p.
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6A. Let f(z) = 2* + T 1 How many zeros does f have in {z € C: 5 < |z| < 1}7

Solution: We claim that f has 4 zeros in the given annulus. We use Rouché’s Theorem at
least once. Let gi(z) = z%. Then g; has four zeros (counted with multiplicity) in {z € C :
|z] < 1} and

@ -ael = |54
1
< §<|91<Z)|

on |z| = 1. Hence f also has four zeros in {z € |z] < 1}. There are two ways to proceed

from here:

1 1 1 1
(1) For |z| < 3 1f(2)] > T I e ()2 Hence f has no zeros in |z| <

N | —



1 1 1 3 1
(2) Let g2(z) = —3/4. Then [f(z) — g2(z)| < Bt ts<i= |92(2)| for [z] = %
Hence f and go have no zeros inside |z| < 1/2.

7A. Let P € R™" be a matrix satisfying P? = P. Let r be the rank of P and assume r > 0.
Show that there exist matrices U,V € R™ " satisfying VTU = I, such that

P=USVT,

where [, is the r x r identity matrix, and S is an r x r diagonal matrix with +1’s on the
diagonal.

Solution: Since P satisfies the polynomial equation #® — x = 0 with distinct real roots

0,1, —1, the Jordan normal form theorem implies that there exist matrices T', J € R™*" such
that P = T'JT~! where T is nonsingular and J is diagonal with r nonzero entries. Moreover,
we may assume that these r nonzero entries (all £1) are in the upper left part of the diagonal
of J.

Thus J = diag(S,0), where S is a r X r diagonal matrix with +1’s on the diagonal. Let
U € R™7 be the first r columns of T', and let V' € R™*" be the transpose of the first r rows
of T71. Tt follows that VIU = I, and P = USVT.

8A. Suppose that (b,),>1 is a sequence of positive real numbers tending to infinity such
that b,/n — 0. Must there exist a sequence (a,),>1 such that (a; + -+ 4+ a,)/n — 0 and
limsup,, (@, /b,) = 007

Solution: Yes. Replacing b,, with b = max br, we may suppose that (b,) is non-decreasing:
this does not upset the hypothesis bn/ni—; 0. Then there exist 1 < n; < ny < ... such
n by, .

that both —1 00 and —** s 00 as k — o0o. Let ap, = /by, and let a; = 0 if

Nng ni
Jj & {ni,ng,...}. For ng < j < mngy1, we have

bt ol (o)l
J - i1 ng N ’
which tends to 0 as k — oo, while
Tim " = Tim 2% = Tim , /-5 = o0

9A. Let G be a non-abelian group of order 16 having a subgroup H isomorphic to Cy x Cy x Cy
(where Cy denotes a cyclic group of order 2). Prove that the number of elements of G of
exact order 2 is either 7 or 11.

Solution: Since (G : H) = 2, the subgroup H is normal in G. We may regard H as a
3-dimensional vector space over Fy. There are 23 — 1 = 7 elements of order 2 in H.

Case 1: G — H contains no element of order 2. Then the number of order 2 elements of GG
is also 7.

Case 2: Suppose that G — H contains an element d of order 2. Then G is the semidirect

product of (d) by H, and is determined up to isomorphism by the conjugation action of d on
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H; this action must be nontrivial, since otherwise G would be Abelian. The action is given

by an element D of Mj5(Fs) of order 2. In particular the eigenvalues are all 1. A Jordan

block of size 3 does not have order 2, so D must consist of Jordan blocks of size 2 and 1.
110

Thus for a suitable choice of basis of H, we have D= |0 1 0]. An element of G — H of
0 01

order 2 is of the form dh where (dh)? = e, or equivalently (dhd~')h = e; the corresponding

values of h are those in the kernel of D — I, so there are 4 of them. Thus G has 7+ 4 = 11

elements of order 2.

1B. Let f(z) be a polynomial with complex coefficients, and let a be a complex number.

Prove that {a, f(a), f(f(a)),...} is not dense in C.

Solution: Let S = {a, f(a), f(f(a)),...}. If S is bounded, then S is not dense in C. So
assume that S is unbounded.

Case 0: f is constant. Then #S < 2, so S is not dense in C.

Case 1: deg f = 1. Write f(z) = sz + t for some s,t € C with s # 0. If s = 1, then S
is contained in a line, and hence is not dense. So suppose that s # 1. Then f(z) = z has a
solution z = ¢, and replacing f(z) by f(z+ ¢)— ¢ (and replacing S by —c+ S) lets us reduce
to the case where t = 0. Now S = {a, sa, sa, ...}. Since S is unbounded, |s| > 1. But then
S contains only finitely many points in each disk, so S is not dense in C.

Case 2: deg f > 2. Then f(z2)/z — o0 as z — o0, so there exists M > 0 such that
|z| > M implies |f(z)| > |z|. Since S is unbounded, there exists n such that |f"(a)| > M.
By induction, we obtain |f"(a)| > M for all N > n. Thus S contains only finitely many
points in the disk |z| < M, so S is not dense in C.

2B. Let A be an n X n complex matrix. Suppose that m is a positive integer such that A™
is diagonalizable. Prove that A™"! is diagonalizable.

Solution: We may assume that A is in Jordan canonical form, and we may reduce to the
case where A is a single Jordan block, so A = Al + N, where A € C and N is nilpotent.

Case 1: A\ = 0. Then N™ is nilpotent and diagonalizable, so N™ = 0. Hence N™*! =
N-0=0.

Case 2: A # 0. Then A™ is diagonalizable with all eigenvalues equal to A™, so A™ = \"[.
In particular A satisfies the equation 2™ — A™ = 0 with distinct roots, so A is diagonalizable.
Thus A™*! is diagonalizable.

3B. Let {uy,ug, - ,ux} be a set of linearly independent vectors in R”, and let .4 be a closed
set in R*¥. Let S be the set of linear combinations aju; + aoug + - - - + agus obtained as
(o, g, ..., ) ranges over all points of A. Show that S is a closed subset of R™.

Solution: Extend wuq,...,u; to a basis uq,...,u, of R", and let U be the n x n matrix
whose columns are the u;. Since U is invertible, it induces a homeomorphism of R™.
Let 0 be the origin in R"™*. Then A x {0} is closed in R* x R"* = R" and S is the

image of A x {0} under the homeomorphism U: R* — R", so S is closed.
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4B. Let K and L be fields, and let K x L be the product ring, with addition and multiplication
defined componentwise. Find all prime ideals of K x L.

Solution: The first projection K x L — K is surjective and its kernel is an ideal I such
that (K x L)/I is a field (isomorphic to K), so [ is a maximal ideal. Similarly the kernel of
the second projection is a maximal ideal J.

Now let P be any prime ideal of K x L. Since (1,0)(0,1) = 0, either (1,0) or (0,1) is in
P. If (1,0) € P, then (a,0) = (a,0)(1,0) € P for all a, so J C P; but J is maximal, so then
P = J. Similarly if (0,1) € P, then P = I.

Thus I and J are the only prime ideals of K x L.

5B. Let f(z) be an entire function and let aq,...,a, be all zeros of f in C. Suppose that
there exist real numbers R > 0 and a > 1 such that |f(z)| > |z|* for all |z| > R. Prove that

- 1
Res.—o; —— = 0.
2 Resso; 75

Solution: Let g(z) = 1/f(z). Let Ry > R be large enough that all a4, ...,a, are inside
the circle |z| = Ry. Let r > Ry. We have

/|: g(z)dz = QWiZRes(g,aj).

7=1
This is true for all r > Ry. Also

/...

|:
21

. < = .
) e = e

27
. dt it
r

g(z)dz
dt

Thus
Z Res(g, a;)

j=1

2
< _7r1 for all r > Ry.
ré—

Hence » 7, Res(g, a;) = 0, since —= — 0 where 7 — oo, since a > 1.

6B. Given a positive integer n, what are the possible values of the triple (rk(A), rk(B),rk(C))
as A, B, C range over real n x n matrices satisfying A+ B + C = 07?

Solution: We claim that the answer is the set of triples (a, b, ¢) of integers in [0, n| satisfying
c<a+b,a<b+c ,and b<c+a.

The image of C' is contained in the sum of the images of A and B, so rk(C') < rk(A)+rk(B).
Similarly, tk(A) < rk(B) + rk(C) and rk(B) < rk(C) + rk(A).

Conversely, suppose that a, b, ¢ satisfy the inequalities. Without loss of generality, ¢ > a, b.
Let A be the diagonal matrix whose diagonal entries are a ones followed by n — a zeros. Let
B be the diagonal matrix whose diagonal entries are ¢ — b zeros followed by b ones followed
by n — ¢ zeros. Let C :== —(A+ B), so A+ B+ C = 0. Then 1k(A) = a, rk(B) = b, and
tk(C') =1k(A + B) = ¢, since C is a diagonal matrix with exactly ¢ nonzero entries.
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7B. Let f be continuous on [0, c0) and suppose that lim f(z) exists and is finite. Must f

r—00

be uniformly continuous? Give a proof or a counterexample.

Solution: The function f is uniformly continuous. Given € > 0, we must find § > 0 such
that |z — y| < ¢ implies |f(x) — f(y)| < e. There exists xy > 0 such that for all x > x4, we
have |f(x) — L| < €/3. By compactness of [0, x] there exists 6 > 0 such that for all z,y in
[0, 2o such that |z — y| < d implies |f(x) — f(y)| < €/3; choose such a §.

Suppose that 0 < z < y < z + J; we must prove that |f(z) — f(y)| <e. If y < xy we are
done. If x < 2y < y then by the triangle inequality,

[f(@) = f(y)l < 1f(@) = fxo)l + [f(wo) = LI+ [L = f(y)| <€/3+¢/3+¢/3=¢
Finally, if zy < x then |f(z) — f(y)| < |f(x) — L| + |L — f(y)| < e. Thus f is uniformly
continuous.

8B. Show that for every positive integer n, there exists an irreducible polynomial over QQ of
degree n such that all its roots are real.

Solution: Let N be a large positive integer. Let f(z) = [],_,(x—2"k) and g(x) = 2+ f(z).
Then g(z) is irreducible by Eisenstein’s criterion. Also

lim g(z) = 0o, and lim g(z) = (—1)"oco0.

T—00

Let 1 <5 <n —1 be an integer.

F2N(G+1/2) f[ (J+1/2-k)
H(j+1/2—k):%11:[(j+1/2—k) IT G+1/2-k).
k=1 k=1 k=j42

Thus

[F2Y(5 +1/2))] > 2872 and sen(f(2V(j +1/2))) = (-1)"7.
It follows that for large N (actually N > 2 will work), g(x) has a zero in (—o0,2¥(1+1/2)),
in (2V(j +1/2),2Y(j +3/2)) for 1 < j <n—2 and in (2¥(n — 1/2,00)). Thus g has n real
roots.

9B. Let f be holomorphic on a neighborhood of the closed disk B;(0) = {z : |z| < 1}.
Suppose that max.—1 [f(2)] < 1. Prove that there exists a complex number z such that
2] < 1and f(z) =

Solution: Let o, > 1 and a,, — 1. Let g,(2) = f(2) — anz and h,(2) = apz. Then
lgn(2) + hn(2)] = |f(2)] <1 < a, = |hy(2)] for all |z] = 1. By Rouché’s Theorem there
is z, with |z,| < 1 such that g,(z,) = 0 or f(z,) = anz,, n = 1,2,.... Let z be a limit
point of {z,}, i.e., z = limy_ 25, for some subsequence {z,, } of {z,}. Then |z| < 1 and
f(z) =lim(an, 2n,) = (limay,, )(limz,, ) =12 = z.



