
FALL 2007 PRELIMINARY EXAMINATION SOLUTIONS

1A. Let Z[i] be the set of complex numbers of the form a + bi where a and b range over all
integers. List all subrings of Z[i]. (Your list should contain each subring exactly once.)

Solution: For n ∈ Z≥1, let Rn = Z + nZi. We claim that Z, R1, R2, . . . is a list of all
subrings of Z[i].

First, each Ri is a subring since it contains 0 and 1 and is closed under negation, addition,
and multiplication. And of course Z is a subring too.

Now we show that any subring R equals either Z or some Rn. Any subring R is an
additive subgroup of Z[i] containing Z. The additive subgroups of Z[i] containing Z are the
inverse images of subgroups of the quotient group Z[i]/Z, which is isomorphic to Z via the
homomorphism sending the class of a + bi to b. The subgroups of Z are {0} and nZ for
n ∈ Z≥1, and their inverse images under Z[i] → Z[i]/Z ' Z are Z and Rn, respectively.

2A. Let f(z) and g(z) be entire functions such that f ′(z) = g(z), g′(z) = −f(z), and
f(2z) = 2f(z)g(z) for all z ∈ C. Find all possibilities for f(z).

Solution: The first two identities imply f ′′(z) = −f(z), to which the general solution is
f(z) = aeiz + be−iz where a, b ∈ C. Conversely, if a, b ∈ C, then the functions f(z) :=
aeiz + be−iz and g(z) := f ′(z) = aieiz − bie−iz satisfy the first two identities.

It remains to check which a, b ∈ C lead to the third identity being satisfied. The third
identity says

ae2iz + be−2iz = 2(aeiz + be−iz)(aieiz − bie−iz)

or equivalently,

(a− 2a2i)e4iz = −b− 2b2i.

This holds for all z ∈ C if and only if a − 2a2i = 0 and −b − 2b2i = 0. These equations
are equivalent to a ∈ {0,−i/2} and b ∈ {0, i/2}. Thus there are four possibilities for f(z),
namely 0, −ieiz/2, ie−iz/2, and

−ieiz/2 + ie−iz/2 = sin z.

3A. Let A be an n × n Hermitian matrix, and let x ∈ Cn be a vector such that A2x = 0.
Prove that Ax = 0.

Solution: We have: A2x = 0 ⇒ AHAx = 0 (since AH = A) ⇒ xHAHAx = 0 ⇒ ‖Ax‖2 =
〈Ax, Ax〉 = 0 ⇒ ‖Ax‖ = 0 ⇒ Ax = 0.

4A. Let (an)n≥1 and (bn)n≥1 be sequences of real numbers. Suppose that 0 ≤ an+1 ≤ an + bn

for all n ≥ 1, and that
∑∞

n=1 bn converges. Prove that limn→∞ an exists and is finite.
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Solution: Fix any ε > 0. Since
∑

bn converges, there exists Nε < ∞ such that for all
n ≥ Nε and all k ≥ 0, we have |bn + bn+1 + · · ·+ bn+k| < ε. Hence for all n ≥ Nε and k ≥ 0,

an+k+1 ≤ an + bn + · · ·+ bn+k

< an + ε.

Therefore sup
m>n

am ≤ an + ε. Hence lim sup
n→∞

an < ∞.

All the an except possibly a1 are nonnegative, so lim inf an is finite. Take n1 < n2 < . . .
such that ank

→ lim inf an. Then

lim sup an = lim
k→∞

sup
m>nk

am

≤ lim
k→∞

(ank
+ ε)

= ε + lim inf an.

Sending ε to zero shows that lim sup an ≤ lim inf an. But lim sup an ≥ lim inf an trivially, so
lim sup an = lim inf an. This means that lim an exists and is finite.

5A. Suppose that G is a finite group such that for each subgroup H of G there exists a
homomorphism φ : G → H such that φ(h) = h for all h ∈ H. Show that G is a product of
groups of prime order.

Solution: We proceed by induction on |G|. The base case |G| = 1 is trivial. Suppose that
|G| > 1 and that the statement is true for all smaller groups. Choose a subgroup H of G
of prime order p. By assumption, there is a homomorphism φ : G → H such that φ(h) = h
for all h ∈ H. Let K = ker φ. By the inductive hypothesis, K is a product of groups of
prime order. Let σ : G → K be a homomorphism such that σ(h) = h for all h ∈ K. Let
α : G → K ×H be the homomorphism defined by

α(g) := (σ(g), φ(g)).

Since σ restricted to ker φ equals the identity on K, the kernel of α is trivial. Also |G| =
|K||H|, so α is an isomorphism. The result follows because H has order p.

6A. Let f(z) = z4 +
z3

4
− 1

4
. How many zeros does f have in {z ∈ C :

1

2
< |z| < 1}?

Solution: We claim that f has 4 zeros in the given annulus. We use Rouché’s Theorem at
least once. Let g1(z) = z4. Then g1 has four zeros (counted with multiplicity) in {z ∈ C :
|z| < 1} and

|f(z)− g1(z)| =

∣∣∣∣z3

4
− 1

4

∣∣∣∣
≤ 1

2
< |g1(z)|

on |z| = 1. Hence f also has four zeros in {z ∈ |z| < 1}. There are two ways to proceed
from here:

(1) For |z| ≤ 1

2
, |f(z)| ≥ 1

4
− 1

16
− 1

32
> 0. Hence f has no zeros in |z| ≤ 1

2
.
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(2) Let g2(z) = −3/4. Then |f(z)− g2(z)| ≤ 1

16
+

1

32
+

1

2
<

3

4
≡ |g2(z)| for |z| = 1

2
.

Hence f and g2 have no zeros inside |z| ≤ 1/2.

7A. Let P ∈ Rn×n be a matrix satisfying P 3 = P . Let r be the rank of P and assume r > 0.
Show that there exist matrices U, V ∈ Rn×r satisfying V T U = Ir such that

P = USV T ,

where Ir is the r × r identity matrix, and S is an r × r diagonal matrix with ±1’s on the
diagonal.

Solution: Since P satisfies the polynomial equation x3 − x = 0 with distinct real roots
0, 1,−1, the Jordan normal form theorem implies that there exist matrices T, J ∈ Rn×n such
that P = TJT−1 where T is nonsingular and J is diagonal with r nonzero entries. Moreover,
we may assume that these r nonzero entries (all ±1) are in the upper left part of the diagonal
of J .

Thus J = diag(S,0), where S is a r × r diagonal matrix with ±1’s on the diagonal. Let
U ∈ Rn×r be the first r columns of T , and let V ∈ Rn×r be the transpose of the first r rows
of T−1. It follows that V T U = Ir and P = USV T .

8A. Suppose that (bn)n≥1 is a sequence of positive real numbers tending to infinity such
that bn/n → 0. Must there exist a sequence (an)n≥1 such that (a1 + · · · + an)/n → 0 and
lim supn→∞(an/bn) = ∞?

Solution: Yes. Replacing bn with b∗n = max
1≤k≤n

bk, we may suppose that (bn) is non-decreasing:

this does not upset the hypothesis bn/n → 0. Then there exist 1 ≤ n1 < n2 < . . . such

that both
nk+1

nk

→∞ and
bnk+1

bnk

→∞ as k → ∞. Let ank
=

√
nkbnk

and let aj = 0 if

j /∈ {n1, n2, . . . }. For nk ≤ j < nk+1, we have∣∣∣∣a1 + · · ·+ aj

j

∣∣∣∣ ≤ k∑
i=1

|ani
|

nk

≤
(1 + o(1))

√
nkbnk

nk

,

which tends to 0 as k →∞, while

lim
n→∞

an

bn

= lim
k→∞

ank

bnk

= lim
k→∞

√
nk

bnk

= ∞.

9A. Let G be a non-abelian group of order 16 having a subgroup H isomorphic to C2×C2×C2

(where C2 denotes a cyclic group of order 2). Prove that the number of elements of G of
exact order 2 is either 7 or 11.

Solution: Since (G : H) = 2, the subgroup H is normal in G. We may regard H as a
3-dimensional vector space over F2. There are 23 − 1 = 7 elements of order 2 in H.

Case 1: G−H contains no element of order 2. Then the number of order 2 elements of G
is also 7.

Case 2: Suppose that G−H contains an element d of order 2. Then G is the semidirect
product of 〈d〉 by H, and is determined up to isomorphism by the conjugation action of d on
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H; this action must be nontrivial, since otherwise G would be Abelian. The action is given
by an element D of M3(F2) of order 2. In particular the eigenvalues are all 1. A Jordan
block of size 3 does not have order 2, so D must consist of Jordan blocks of size 2 and 1.

Thus for a suitable choice of basis of H, we have D =

1 1 0
0 1 0
0 0 1

. An element of G−H of

order 2 is of the form dh where (dh)2 = e, or equivalently (dhd−1)h = e; the corresponding
values of h are those in the kernel of D − I, so there are 4 of them. Thus G has 7 + 4 = 11
elements of order 2.

1B. Let f(z) be a polynomial with complex coefficients, and let a be a complex number.
Prove that {a, f(a), f(f(a)), . . .} is not dense in C.

Solution: Let S = {a, f(a), f(f(a)), . . .}. If S is bounded, then S is not dense in C. So
assume that S is unbounded.

Case 0: f is constant. Then #S ≤ 2, so S is not dense in C.
Case 1: deg f = 1. Write f(z) = sz + t for some s, t ∈ C with s 6= 0. If s = 1, then S

is contained in a line, and hence is not dense. So suppose that s 6= 1. Then f(z) = z has a
solution z = c, and replacing f(z) by f(z + c)− c (and replacing S by −c+S) lets us reduce
to the case where t = 0. Now S = {a, sa, s2a, . . .}. Since S is unbounded, |s| > 1. But then
S contains only finitely many points in each disk, so S is not dense in C.

Case 2: deg f ≥ 2. Then f(z)/z → ∞ as z → ∞, so there exists M > 0 such that
|z| > M implies |f(z)| > |z|. Since S is unbounded, there exists n such that |fn(a)| > M .
By induction, we obtain |fN(a)| > M for all N ≥ n. Thus S contains only finitely many
points in the disk |z| ≤ M , so S is not dense in C.

2B. Let A be an n× n complex matrix. Suppose that m is a positive integer such that Am

is diagonalizable. Prove that Am+1 is diagonalizable.

Solution: We may assume that A is in Jordan canonical form, and we may reduce to the
case where A is a single Jordan block, so A = λI + N , where λ ∈ C and N is nilpotent.

Case 1: λ = 0. Then Nm is nilpotent and diagonalizable, so Nm = 0. Hence Nm+1 =
N · 0 = 0.

Case 2: λ 6= 0. Then Am is diagonalizable with all eigenvalues equal to λm, so Am = λmI.
In particular A satisfies the equation xm−λm = 0 with distinct roots, so A is diagonalizable.
Thus Am+1 is diagonalizable.

3B. Let {u1, u2, · · · , uk} be a set of linearly independent vectors in Rn, and let A be a closed
set in Rk. Let S be the set of linear combinations α1u1 + α2u2 + · · · + αkuk obtained as
(α1, α2, . . . , αk) ranges over all points of A. Show that S is a closed subset of Rn.

Solution: Extend u1, . . . , uk to a basis u1, . . . , un of Rn, and let U be the n × n matrix
whose columns are the ui. Since U is invertible, it induces a homeomorphism of Rn.

Let 0 be the origin in Rn−k. Then A × {0} is closed in Rk × Rn−k = Rn, and S is the
image of A× {0} under the homeomorphism U : Rn → Rn, so S is closed.
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4B. Let K and L be fields, and let K×L be the product ring, with addition and multiplication
defined componentwise. Find all prime ideals of K × L.

Solution: The first projection K × L → K is surjective and its kernel is an ideal I such
that (K ×L)/I is a field (isomorphic to K), so I is a maximal ideal. Similarly the kernel of
the second projection is a maximal ideal J .

Now let P be any prime ideal of K × L. Since (1, 0)(0, 1) = 0, either (1, 0) or (0, 1) is in
P . If (1, 0) ∈ P , then (a, 0) = (a, 0)(1, 0) ∈ P for all a, so J ⊆ P ; but J is maximal, so then
P = J . Similarly if (0, 1) ∈ P , then P = I.

Thus I and J are the only prime ideals of K × L.

5B. Let f(z) be an entire function and let a1, . . . , an be all zeros of f in C. Suppose that
there exist real numbers R > 0 and a > 1 such that |f(z)| ≥ |z|a for all |z| ≥ R. Prove that

n∑
j=1

Resz=aj

1

f(z)
= 0.

Solution: Let g(z) = 1/f(z). Let R0 > R be large enough that all a1, . . . , an are inside
the circle |z| = R0. Let r ≥ R0. We have∫

|z|=r

g(z)dz = 2πi
n∑

j=1

Res(g, aj).

This is true for all r ≥ R0. Also∣∣∣∣∫
|z|=r

g(z)dz

∣∣∣∣ =

∣∣∣∣ir ∫ 2π

0

dt

f(reit)
eit

∣∣∣∣ ≤
r

∫ 2π

0

dt

|f(reit)|
≤ 2πr

1

ra
=

2π

ra−1
.

Thus ∣∣∣∣∣
n∑

j=1

Res(g, aj)

∣∣∣∣∣ ≤ 2π

ra−1
for all r ≥ R0.

Hence
∑n

j=1 Res(g, aj) = 0, since 1
ra−1 → 0 where r →∞, since a > 1.

6B. Given a positive integer n, what are the possible values of the triple (rk(A), rk(B), rk(C))
as A, B, C range over real n× n matrices satisfying A + B + C = 0?

Solution: We claim that the answer is the set of triples (a, b, c) of integers in [0, n] satisfying
c ≤ a + b, a ≤ b + c, and b ≤ c + a.

The image of C is contained in the sum of the images of A and B, so rk(C) ≤ rk(A)+rk(B).
Similarly, rk(A) ≤ rk(B) + rk(C) and rk(B) ≤ rk(C) + rk(A).

Conversely, suppose that a, b, c satisfy the inequalities. Without loss of generality, c ≥ a, b.
Let A be the diagonal matrix whose diagonal entries are a ones followed by n− a zeros. Let
B be the diagonal matrix whose diagonal entries are c− b zeros followed by b ones followed
by n − c zeros. Let C := −(A + B), so A + B + C = 0. Then rk(A) = a, rk(B) = b, and
rk(C) = rk(A + B) = c, since C is a diagonal matrix with exactly c nonzero entries.
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7B. Let f be continuous on [0,∞) and suppose that lim
x→∞

f(x) exists and is finite. Must f

be uniformly continuous? Give a proof or a counterexample.

Solution: The function f is uniformly continuous. Given ε > 0, we must find δ > 0 such
that |x− y| < δ implies |f(x)− f(y)| < ε. There exists x0 ≥ 0 such that for all x ≥ x0, we
have |f(x) − L| < ε/3. By compactness of [0, x0] there exists δ > 0 such that for all x, y in
[0, x0] such that |x− y| < δ implies |f(x)− f(y)| < ε/3; choose such a δ.

Suppose that 0 ≤ x ≤ y < x + δ; we must prove that |f(x)− f(y)| < ε. If y ≤ x0 we are
done. If x ≤ x0 < y then by the triangle inequality,

|f(x)− f(y)| ≤ |f(x)− f(x0)|+ |f(x0)− L|+ |L− f(y)| < ε/3 + ε/3 + ε/3 = ε.

Finally, if x0 ≤ x then |f(x) − f(y)| ≤ |f(x) − L| + |L − f(y)| < ε. Thus f is uniformly
continuous.

8B. Show that for every positive integer n, there exists an irreducible polynomial over Q of
degree n such that all its roots are real.

Solution: Let N be a large positive integer. Let f(x) =
∏n

k=1(x−2Nk) and g(x) = 2+f(x).
Then g(x) is irreducible by Eisenstein’s criterion. Also

lim
x→∞

g(x) = ∞, and lim
x→−∞

g(x) = (−1)n∞.

Let 1 ≤ j ≤ n− 1 be an integer.

f(2N(j + 1/2)) = 2Nn

n∏
k=1

(j + 1/2− k)

n∏
k=1

(j + 1/2− k) =
−1

4

j−1∏
k=1

(j + 1/2− k)
n∏

k=j+2

(j + 1/2− k).

Thus
|f(2N(j + 1/2))| > 2Nn−2 and sgn(f(2N(j + 1/2))) = (−1)n−j.

It follows that for large N (actually N ≥ 2 will work), g(x) has a zero in (−∞, 2N(1+1/2)),
in (2N(j + 1/2), 2N(j + 3/2)) for 1 ≤ j ≤ n− 2 and in (2N(n− 1/2,∞)). Thus g has n real
roots.

9B. Let f be holomorphic on a neighborhood of the closed disk B1(0) = {z : |z| ≤ 1}.
Suppose that max|z|=1 |f(z)| ≤ 1. Prove that there exists a complex number z such that
|z| ≤ 1 and f(z) = z.

Solution: Let αn > 1 and αn → 1. Let gn(z) = f(z) − αnz and hn(z) = αnz. Then
|gn(z) + hn(z)| = |f(z)| ≤ 1 < αn = |hn(z)| for all |z| = 1. By Rouché’s Theorem there
is zn with |zn| < 1 such that gn(zn) = 0 or f(zn) = αnzn, n = 1, 2, . . . . Let z be a limit
point of {zn}, i.e., z = limk→∞ znk

for some subsequence {znk
} of {zn}. Then |z| ≤ 1 and

f(z) = lim(αnk
znk

) = (lim αnk
)(lim znk

) = 1 · z = z.
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