
1A
Find a sequence rn of positive rational numbers such that,

∑∞
n=0 rn

converges and for any prime p and any positive integer m, pm divides
the numerator of sk−sj (written in lowest terms) for k and j sufficiently

large, where sk =
∑k

n=0 rn.
Solution. Take

rn =
n!

(n! + 1)2
.

The series converges because rn ≤ 1/n! and other requirement follows
from the fact that pm|n! for n ≥ pm.

2A
Suppose the function f is analytic in the entire complex plane, and

suppose that f(z)/z is bounded in the region |z| > 1. Prove that
f(z) = az + b for some constants a and b.
Solution. (f(z)− f(0))/z is bounded and analytic on the whole plane
(when extended to z = 0 by continuity), so is constant.

3A
Find the eigenvalues of the n × n-matrix (aij) (where n > 2) such

that

aij = 1 when j−i ≡ 1 mod n, aij = −1 when j−i ≡ −1 mod n, and aij = 0 otherwise.

(Hint: find sequences bi and complex numbers z such that (z−z−1)bi =
bi+1 − bi−1, bi = bi+n for all integers i.)
Solution. The operator can be thought of as a finite difference

version of the differentiation on a discretized circle. Its eigen-vectors
(x1, . . . , xn) are “Fourier modes” (1, j, j2, . . . , jn−1) where j = e2πik/n,
k = 0, 1, . . . , n − 1. The corresponding eigen-values are j − j−1 =
2i sin(2πk/n).

4A
For which integer values of n (positive or negative or zero) is there

a holomorphic function of z defined for |z| > 1 whose derivative is

zn

1 + z2
.

Solution. Changing z to 1/z we want to know when z−n

1+z−2 = z2−n −
z4−n + z6−n − · · · is the derivative of a function defined near z = 0.
This holds if and only if the residue at 0 vanishes, in other words if
the coefficient of z−1 vanishes, which is true if n < 0 or n is even. (An
alternative solution is to sum the residues at z = ±i.)

5A
Are the rings R[x]/(x2 + x− 1) and R[x]/(x2 + 2x− 3) isomorphic?

Solution. Yes. When a real polynomial f = (x−a)(x−b) has distinct
1
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real roots a 6= b, the quotient ring R[x]/(f) is isomorphic to R × R.
The isomorphism is established by evaluation:

R[x]→ R× R, p 7→ (p(a), p(b))

whose kernel consists of polynomials divisible by f .
6A
If f is a continuous strictly increasing function of x with f(0) = 0

and with inverse f−1 show that∫ a

0

f(x)dx+

∫ b

0

f−1(x)dx ≥ ab

for any positive real numbers a and b. (Hint: draw a picture.) Use this
to prove Young’s inequality, which states that if p and q are positive
reals with 1/p+ 1/q = 1 and a and b are positive reals then

ap

p
+
bq

q
≥ ab.

(The question on the exam had both inequalities the wrong way
round.)

Solution. Draw the graph of f , and color in the region below the
graph whose area is the first integral, and the area to the left of the
graph whose are is the second integral. These cover the rectangle 0 ≤
x ≤ a, 0 ≤ y ≤ b, which proves the first inequality. Young’s inequality
follows by taking f(x) = xp−1, with inverse is given by f−1(x) = xq−1.

7A
Suppose Hi is a normal subgroup of a group G for 1 ≤ i ≤ k such

that Hi ∩Hj = {1} for i 6= j (where 1 is the identity element). Prove
that G contains a subgroup isomorphic to H1×H2× · · ·×Hk if k = 2,
but not necessarily if k ≥ 3.

Solution: If k = 2 the map H1×H2 → G induced by the inclusions
Hi ⊂ G is injective, as the kernel consists of pairs (h1, h2) with hi ∈ Hi

such that h1 = h−1
2 in G which implies that h1, h2 ∈ H1 ∩ H2 = {1}.

To see that this can fail if k ≥ 3 consider G = Z/(2) × Z/(2). Let
H1 = 〈(1, 0)〉, H2 = 〈(0, 1)〉, H3 = 〈(1, 1)〉. Then the assumptions are
satisfied but the element ((1, 0), (0, 1), (1, 1)) ∈ H1 ×H2 ×H3 is in the
kernel of the map

H1 ×H2 ×H3 → G.

8A The infinitely differentiable real function u(x, t) satisfies the dif-
fusion PDE ut = uxx in −∞ < x < ∞, t > 0. Assume that u and all
its partial derivatives of all orders are rapidly decreasing in x, in other
words bounded by a constant times x−n for all n > 0 in any strip of
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the form 0 < t < a. Also assume that
∫∞
−∞ u(x, 1) dx = 1. Show that if

t > 0 then
d

dt

∫ ∞
−∞

x2u(x, t) dx = 2.

Solution.
d

dt

∫ ∞
−∞

x2u dx =

∫ ∞
−∞

x2ut dx =

∫ ∞
−∞

x2uxx dx = 2

∫ ∞
−∞

u dx.

Last equality is two integrations by parts. Next,

d

dt

∫ ∞
−∞

u dx =

∫ ∞
−∞

uxx dx = 0

so
∫∞
−∞ u dx = constant independent of t. The constant is 1 by

∫∞
−∞ u(x, 0) dx =

1. Hence,
d

dt

∫ ∞
−∞

x2u(x, t) dx = 2.

9A
Suppose that fn for n > 0 is a sequence of continuous real-valued

functions on the unit interval [0, 1] such that limn→∞ fn(x) = 0 for all
x. Prove or find a counterexample to the statement

lim
n→∞

∫ 1

0

fn(x)dx = 0.

The statement is false. A counterexample is given by taking fn to
be a function vanishing outside (0, 1/n), and having a bump of average

height n on this interval (so that
∫ 1

0
fn(x)dx = 1).

1B Let V be a non-zero vector space over an infinite field. Show: V
is not the union of finitely many cosets a1 + V1, . . . , an + Vn of proper
subspaces V1, . . . , Vn.

Solution: If V is the union of finitely many cosets, we can assume
n is minimal. So there is some v in a1 +V1 not in any other coset. Pick
some vector w not in V1. Then for any coset Vi, there is at most one
value of x such that v+xw is in the other coset. As the field is infinite,
there is some x such that v + wx is not in any of the cosets.

2B Evaluate the integral ∫ ∞
0

dx

1 + xα

for α > 1.
Solution: Apply Cauchy’s theorem to the sector bounded by the

lines arg(z)=0, arg(z) = 2π/α and a circle of large radius. This ex-
presses 1− e2πi/α times the integral as 2πi times the residue −eπi/α/α
at z = eπi/α. So the integral is π

α sin(π/α)
.
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3B Let F be a field and p a prime. For n ≥ 1 show that
the number (up to isomorphism) of abelian groups of order pn equals
the number (up to similarity) of n×n matrices A over F such that
An = 0.

Solution:An abelian group of order pn is a direct sum of groups
Gi of the form Z/pdi , and determined up to isomorphism by, for each
d ≤ n, how many i have di = d.

For A a n×n matrix, viewed as operating on V = F n, V is the direct
sum of A-invariant subspaces Vi of dimension di where on Vi A has
minimal polynomial qi(x) of degree di (with qi(x) = a power of a monic
irreducible). Since An = 0, also Anv = 0 for v ∈ Vi so the minimal
polynomial qi(x) divides xn. Thus qi(x) = xdi . Up to similarity A is
classified by, for each polynomial q(x), how many i have qi(x) = q(x),
or equivalently, for each d ≤ n, how many Vi have dimension di.

In both cases, the sum of all the di must equal n. So both are counted
in the same way, by the number of partitions of n.

4B How many complex non-real zeros does the polynomial z11−3z3+
1 have with 1 ≤ |z| ≤ 2?

Solution: By Runge’s theorem, there are 11 zeros with |z| ≤ 2 as
|z11| has 11 zeros in this region and dominates the rest of the polyno-
mial. There are 3 zeros with |z| < 1 as |3z3| has 3 zeros in this region
and dominates the rest of the polynomial. So there are 8 zeros in the
region 1 ≤ |z| ≤ 2. Sketching the graph of f shows that exactly two
of these 6 zeros are real (more precisely, f is monotonic on each of the
intervals [1, 2] and [−2,−1] and changes sign on each of them, so it has
exactly one zero in each interval.) So f has 6 complex non-real zeros
in the region.

5B Prove that the quotient of the general linear group GL2(Z/3Z)
by its center is isomorphic to the symmetric group S4 on 4 points.

Solution:An invertible linear transformation of (Z/3Z)2 permutes
the set of 4 subspaces of dimension 1 (with “slopes” 0, 1,−1, and ∞).
This defines a homomorphism GL2(Z/3Z) → S4. Since the transfor-
mations preserving each of the coordinate lines correspond to diagonal
matrices, and those of them which preserve the graph of the identity
map are scalar, we see that the kernel of the homomorphism coincides
with the center of the matrix group, consisting of all invertible scalar
matrices. Over Z/3Z, these are ±I. The order of the quotient group
is (32− 1)(32− 3)/2 = 24 = |S4|, which shows that the quotient by the
center is mapped bijectively onto S4.
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6B Show that ∫ 1

0

1

xx
dx =

∞∑
n=1

1

nn
.

(Hint: Write xx in terms of the exponential and logarithm functions,

and evaluate the integral
∫ 1

0
xs log(x)ndx.)

Solution: Integration by parts shows that
∫ 1

0
xs log(x)ndx = −(n/(s+

1))
∫ 1

0
xs log(x)n−1dx, and repeating this n times shows that it is equal

to n!(−1/(s+ 1))n
∫ 1

0
xsdx = n!(−1)n/(s+ 1)n+1. The identity follows

from this by expanding x−x as
∑

n≥0(−x log(x))n/n! and integrating
term by term (which is justified as all terms are positive).

7B (a) Prove that α =
√

3 +
√

2 is algebraic over Q by writing down
a polynomial f(x) ∈ Q[x] of degree 4 having α as a root. (b) Show
that f(x) is irreducible over Q.

Solution: For (a) take f(x) to be

(x− (
√

3 +
√

2))(x+ (
√

3 +
√

2))(x− (
√

3−
√

2))(x+ (
√

3 +
√

2))

= x4 − 10x2 + 1.

For (b) note that if f(x) factors over Q then some product of two
of the factors of the above factorization into linear terms over C must
be in Q[x]. On the other hand, by direct computation no two of the
above linear terms multiply together to give a polynomial with rational
coefficients.

8B We have a fair N -sided die. One side is black and others are
white. Let n(N) be the smallest number of throws so the probability
of getting at least one black is bigger than 1/2. Compute

lim
N→∞

n(N)

N
.

Solution:The probability of getting only whites in n throws is
(
1− 1

N

)n
so we want the smallest integer n so(

1− 1

N

)n
<

1

2

or equivalently

n

N
>

− log 2

N log
(
1− 1

N

) → log 2 as N →∞.

Hence,

lim
N→∞

n(N)

N
= log 2 ≈ 0.69.
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9B Let n ≥ 2 be an integer such that 2n + n2 is prime. Show that
n ≡ 3 (mod 6).

Solution: Let p denote the prime 2n + n2. The prime p is odd as
n ≥ 2. Therefore we find that n2 ≡ 1 (mod 2) so n is odd. It therefore
suffices to show that 3|n. Suppose 3 does not divide n. Then we have

2n + n2 ≡ (−1)n + 1 (mod 3).

Now this expression is not zero mod 3 as 3 does not divide p since p is
prime and greater than 8 (by the assumption on n). Therefore n is even
contradicting the earlier result that shows that n is odd. Therefore we
must have 3|n.


