
Problem 1A.

Find the volume of the solid given by x2 + z2 ≤ 1, y2 + z2 ≤ 1. (Hint:
∫ 1

−1(something)dz.)

Solution: The volume is
∫ 1

−1 4xydz where x = y =
√

1− z2. This integral has value 16/3.

Problem 2A.

Let f(x) be a irreducible polynomial over the rational numbers Q. Let a in C be a nonzero
complex root such that a2 is a root. Prove that for some n, f(x) divides xn − 1.

Solution: For any root b of f(x), b2 is a root. So a, a2, . . . , a2
r
, . . . are all roots. So am = an

for some m < n. f(x) is the minimal polynomial for a; so f(x) divides xn−1 as a is non-zero.

Problem 3A.

Let U be a simply connected region, U ⊆ C = the complex numbers. Let f : U → C be
analytic and never 0. Show that there is an analytic g : U → C such that f = eg.

Solution: Let h = f ′/f . h is analytic, U is simply connected; so there is k : U → C such
that k′ = h. The derivitive of ek/f is 0, so f = cek for some c in C.

Problem 4A.

Show that for any integer n ≥ 0 there is a unique polynomial Sn of degree n with real
coefficients such that ∫ 1

−1
Sn(x)P (x)dx = P (1)

for all polynomials P of degree at most n. Show that
∫ 1

−1(1−x)Sm(x)Sn(x)dx = 0 if m 6= n.
Solution: For any linear function P → f(P ) from polynomials to reals there is a unique

polynomial Sn such that
∫ 1

−1 Sn(x)P (x)dx = f(P ), becuase this gives a linear map from
polynomials Sn to linear functionals that has zero kernel and is between vector spaces of the
same dimension. In particular there is a polynomial Sn for P 7→ P (1).

If m < n then (1−x)Sm has degree at most m and has value 0 at 1, so its integral against
Sn vanishes by definition of Sn. If m > n a similar argument with m and n exchanged again
shows that the integral vanishes, so it vanishes whenever m 6= n.



Problem 5A.

Suppose given an > 0 such that Σ∞n=1an = L <∞ and such that for all n, an ≤ Σ∞m=n+1am.
Show that for all t with 0 < t < L there is a subseries ani

such that Σ∞i=1ani
= t.

Solution: For each n consider partial sums s = Σk
i=1ani

with nk < n; we’ll say that * holds
of (n,s) iff s < t < s + an. Since t < L there is n, s such that *. For any n, s with * since
t − s < an ≤ Σ∞m=n+1am, we can find n′ > n and extend s to s′ such that n′, s′ has *. This
produces a subseries ani

; since the an converges to 0, this subseries converges to t.

Problem 6A.

Let G be a group. Show that if G has trivial center then its automorphism group Aut(G)
has trivial center.

Solution: For a in G let ga be the inner automorphism (ga(x) = axa−1). For h in Aut(G),
h◦ga = gh(a)◦h. If h is in the center of Aut(G) then, for all a in G, ga = gh(a) so a−1h(a) is
in the center of G, so h is the identity.

Problem 7A.

Find the Laurent expansion of

f(z) = (1 + z)−1 + (z2 − 9)−1

in the set {z : 1 < |z| < 3}.

Solution:
1

z
− 1

z2
+

1

z3
− . . .− 1

9
− z2

81
− z4

729
− . . . .

Problem 8A.

Let A be an n by n real matrix such that all entries not on the diagonal are positive, and
the sum of the entries in each row is negative. Show that the determinant of A is non-zero.

Solution:
Proof by induction on the size of the matrix. Add a suitable multiple of the first column

from each other column to kill all entries in the first row other than the first. Then the



(n − 1) × (n − 1) matrix formed by the crossing off the first row and column still has the
property in the question, so its determinant is nonzero by induction. The determinant of
the original matrix is this determinant times the first entry, so is also nonzero.

Problem 9A.

The Bessel function J1(x) = a0 + a1x+ a2x
2 + · · · satisfies the differential equation

x2
d2J1
dx2

+ x
dJ1
dx

+ (x2 − 1)J1 = 0

and also has derivative 1 at 0. Find the coefficients an.

Solution: Looking at the coefficient of xn in the differential equation gives

n(n− 1)an + nan + an−2 − an = 0

so
an = −an−2/(n− 1)(n+ 1).

As a0 = 0, a1 = 1, this gives an = 0 for n even, and a2m+1 = (−1)m/4mm!(m + 1)! for
n = 2m+ 1 odd.

Problem 1B.

For which pairs of real numbers (a, b) does the series
∑∞

n=3 n
a(log n)b converge?

Solution:
By the integral test this is equivalent to asking for convergence of the integral∫ ∞

x=3

xa(log x)bdx

This converges if a < −1 and diverges if a > −1 by comparison with
∫
xsdx. If a = −1 then

it converges for b < −1 and diverges if b > −1 again by doing the integral explicitly, using
the fact that the derivative of (log x)b+1 is (b+ 1)(log x)bx−1. For a = b = −1 it diverges as
the derivative of log log x is x−1(log x)−1.

Problem 2B.

Let k be one of the fields C, R, Q, F4044121 (the finite field with 4044121 = 20112 elements;
2011 is prime).



For which of the above choices of k is the ring k[x]/(x4 + 6x − 12) a field? (Here (x4 +
6x− 12) denotes the ideal in k[x] generated by x4 + 6x− 12.)

Solution: In each case, the quotient ring is a field if and only if x4 + 6x− 12 is irreducible
in k[x]. It is not irreducible in R[x] because all irreducible polynomials with real coefficients
have degree ≤ 2, and it is not irreducible in C[x] because it has a root. In F2011 it is either
reducible (in which case it is also reducible in F4044121), or it is not reducible, in which case if
α is a root in the algebraic closure then that root lies in F20114 , so it is quadratic over F20112 ,
and therefore the polynomial has a quadratic factor over that field and is therefore again
reducible. Finally, x4 + 6x− 12 is irreducible in Z[x] because it is an Eisenstein polynomial
with p = 3 (but not p = 2), hence by Gauss’s lemma it is irreducible in Q[x].

Therefore the given ring is a field only for the field k = Q (among the given fields).

Problem 3B.

If a and b are points in the open unit disk of the complex plane, show that there is a
holomorphic map from the open unit disc onto itself with holomorphic inverse that takes a
to b.

Solution: It is sufficient to do the case a = 0, because for the general case one can just
compose a map taking a to 0 with a map taking 0 to b. The Moebius transformation taking
z to (z + b)/(zb+ 1) takes a = 0 to b.

Problem 4B.

The sequence un is defined by u0 = 0, u1 = 1, un = 3un−1+un−2. Calculate limn→+∞ un/un−1.

Solution: un is given by a linear combination of the powers λn1 , λn2 of λ2 = 3λ + 1 (with
non-zero coefficients), so the limit of the ratio un/un−1 is the root (3 +

√
13)/2 of largest

absolute value.

Problem 5B.

Prove that a continuous map from a compact metric space to a metric space has closed
image.

Solution: This follows from the facts that the image of a compact set under a continuous
map is compact, and any compact subset of a metric space is closed, both of which are
standard bookwork.



Problem 6B.

(a) Show that if every element of a group has order 1 or 2 then the group is abelian.
(b) Show that there is a non-abelian group such that every element has order 1 or 3.

Solution: (a) abab = (ab)2 = 1 so ab = b−1a−1, but a = a−1 and b = b−1 so ab = ba.
(b) Use the group of order 27 of 3 by 3 matrices over the field with 3 elements that are

upper triangular with diagonal elements 1.

Problem 7B.

Find ∫ 2π

0

1

1 + 1
2

sin(θ)
dθ.

Solution: Put z = eiθ. Then the integral is∫
C

1

1 + 1
2
z−z−1

2i

dz

iz
,

where C is the unit circle with a positive orientation. The only singularity inside of C is at
z = (−2 +

√
3)i. The residue there is

2√
3i
,

so the answer is
4π√

3
.

Problem 8B.

Compute A100 where A is the matrix

(
3/2 1/2
−1/2 1/2

)
.

Solution: The only eigenvalue of A is 1, and the only eigenvectors are multiples of v =
(

1
−1

)
.

The matrix A takes v to v and u to u + v/2 where u =
(
1
0

)
. So A100 takes v to v and u to

u+ 50v, so is
(

51,50
−50,−49

)
.

(Alternative solution: A100 = ((A(((A3)2)2)2)2)2.)

Problem 9B.



Let X and Y be metric spaces, with metrics dX and dY , respectively. Let f, f1, f2, . . . be
bijective functions from X to Y , with inverses g, g1, g2, . . . , respectively. Assume that

1. g is uniformly continuous; and

2. fn → f uniformly as n→∞.

Prove that gn → g uniformly as n→∞.

Solution: Let ε > 0 be given. Because g is uniformly continuous we may fix δ > 0 such
that dX(g(y), g(y′)) < ε for all y, y′ ∈ Y for which dY (y, y′) < δ.

Because fn → f uniformly, we may fix an integer N > 0 such that dY (fn(x), f(x)) < δ
for all x ∈ X and all n ≥ N .

Then, for all n ≥ N and all y ∈ Y , we have

dY (f(gn(y)), y) = dY (f(gn(y)), fn(gn(y))) < δ

by choice of N , and therefore

dX(gn(y), g(y)) = dX(g(f(gn(y))), g(y)) < ε

by choice of δ. Thus gn → g uniformly.


