
Problem 1A. Score:

Show that ∫ 1

0

x−x dx =
∞∑
n=1

n−n

Solution:
Write x−x = e−x log x, Taylor expand the exponential, and integrate term by term.

Problem 2A. Score:

Suppose f : R → R is differentiable and satisfies f ′(x) > f(x) for all real x. Show that if
f(0) = 0 then f(x) > 0 for all x > 0.

Solution:
Since f ′(0) > 0 we have f(x) = x · f ′(0) + o(|x|) in a neighborhood of zero, so there is

a t > 0 such that f is positive on (0, t). Assume for contradiction that f(x) ≤ 0 for some
x > 0 and let x0 be the first such x. Then f(x) > 0 on (0, x0), which means that f ′(x) > 0
on (0, x0), so f(x0) > f(0) = 0, a contradiction

Problem 3A. Score:

Let X be a metric space.
(a) If U is a subset of X show that there is a unique open set ¬U disjoint from U and
containing all open sets disjoint from U .
(b) Give an example of an open set U with U 6= ¬¬U
(c) Prove that for all open sets U , ¬U = ¬¬¬U . (Hint: if A ⊆ B and B ⊆ A then A = B.)

Solution: (a) Take ¬U to be the union of all open sets disjoint from U , which is open as
the union of any collection of open sets is open.

(b) Take X to be the real line and U to be the nonzero reals. Then ¬U is empty so ¬¬U
is the real line.

(c) We have A ⊆ ¬¬A and applying this to A = ¬U we get ¬U ⊆ ¬¬¬U . On the other
hand, if A ⊆ B then ¬B ⊆ ¬A, and applying this to A = U,B = ¬¬U we get ¬¬¬U ⊆ ¬U .



Combining these gives ¬¬¬U = ¬U .

Problem 4A. Score:

Let a be a real number with |a| < 1. Prove that

∞∑
k=1

ak cos(kθ) =
−a2 + a cos θ

1 + a2 − 2a cos θ

Solution: We use the fact that for any complex number z = eiθ = cos θ + i sin θ ∈ C

1

1− az
=
∞∑
k=0

akzk =
∞∑
k=0

akeikθ = 1 +
∞∑
k=1

ak(cos(kθ) + i sin(kθ)).

Therefore

∞∑
k=1

ak cos(kθ) = <
(

1

1− az
− 1

)
= <

(
az

1− az

)
= <

(
az(1− az̄)

|1− az|2

)
= <

(
az̄ − a2

(1− a cos θ)2 + (a sin θ)2

)
=

a cos θ − a2

1 + a2 − 2a cos θ

Problem 5A. Score:

Describe a conformal map from the set

{|z − 4i| < 4} ∩ {|z − i| > 1}

oto the open unit disk.

Solution: Compose

f1 : z → 1/z

f2 : z → 8π(z + i/2)/3

f3 : z → exp(z)

f4 : z → (z − i)/(z + i)



Problem 6A. Score:

Let A be an n× n matrix with real entries such that (A− I)m = 0 for some m ≥ 1. Prove
that there exists an n× n matrix B with real entries such that B2 = A.

Solution: Write A = I + N , so Nm = 0. Let P (x) be the m-th Taylor polynomial of the
function

√
1 + x, so P (x)2 ≡ 1 + x (mod xm). In other words

P (x)2 = 1 + x+ xmQ(x)

for some Q(x) ∈ R[x]. Then

P (N)2 = I +N +NmQ(N) = I +N = A,

so B := P (N) satisfies B2 = A. S

Problem 7A. Score:

Suppose A = (aij) is a real symmetric n×n matrix with nonnegative eigenvalues. Show that

|aij| ≤
√
aiiajj

for all distinct i, j ≤ n.

Solution:
Since A is symmetric with nonnegative eigenvalues, we may diagonalize A as A = UDUT

with positive D, so A = BTB for BT = UD1/2. Thus, A is a Gram matrix, i.e., aij = 〈vi, vj〉
where vi are the columns of B, so by Cauchy Schwartz aij ≤ ‖vi‖‖vj‖ ≤

√
aiiajj, as desired.

Problem 8A. Score:

For three non-zero integers a, b and c show that

gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c)).

where gcd and lcm stand for the greatest common divisor and the least common multiple of
two integers, respectively.



Solution: Given a prime p, let α, β, and γ be the exponents of p in the prime factorization
of a, b, and c, respectively. Then it will suffice to show that

min{α,max{β, γ}} = max{min{α, β},min{α, γ}} .

Without loss of generality, we may assume that β ≤ γ; in that case max{β, γ} = γ and
min{α, β} ≤ min{α, γ}. Therefore the above equation is true because both sides are equal
to min{α, γ}.

Problem 9A. Score:

Suppose a prime number p divides the order of a finite group G. Prove the existence of an
element g ∈ G of order p.

Solution: Consider the set X = {(g1, . . . , gp) ∈ Gp | g1 · · · gp = e}. It is acted upon by the
cyclic group Z/pZ with 1 ∈ Z/pZ acting as the cyclic shift

(g1, . . . , gp) 7−→ (gp, g1, . . . , gp−1).

A fixed point of this action is a constant p-tuple (g, . . . , g) such that gp = e. The number of
fixed points is not zero, since (e, . . . , e) is a fixed point, and is congruent modulo p to

|X| = |G|p−1,

i.e., it is divisible by p, since p > 1. It follows that there is an element g 6= e with gp = e.

Problem 1B. Score:

A mathematician (stupidly) tries to estimate π2/6 =
∑∞

n=1 1/n2 by taking the sum of
the first N terms of the series. What is the smallest value of N such that the error of this
approximation is at most 10−6? Hint: integral test.

Solution:
The integral test shows that 1/(N + 1) <

∑∞
n=N+1 1/n2 < 1/N , so N = 106.

Problem 2B. Score:



Suppose p(z) is a nonconstant real polynomial such that for some real number a, p(a) 6= 0
and p′(a) = p′′(a) = 0. Prove that p must have at least one nonreal zero.

Solution: Observe that if q(z) is a real-rooted polynomial with distinct roots, then by Rolle’s
theorem q′(z) is also real-rooted (since it has degree one less than the degree of q) and has
the property that between every two roots of q′ there is a root of q. Since polynomials with
distinct roots are dense in the set of real-rooted polynomials, this implies that if q is any
real-rooted polynomial and q′(z) has a double root at z then q(z) = 0.

For the given polynomial p′(z) has a double root at a, but p(a) 6= 0, so p cannot be
real-rooted.

Problem 3B. Score:

Prove that a continuous function from R to R which maps open sets to open sets must be
monotone.

Solution: We prove the contrapositive. Assume f is not monotone, i.e., there exist a < b < c
with f(a) < f(b) and f(b) > f(c) or with f(a) > f(b) and f(b) < f(c). In the first case, let
m be the point at which f(x) is maximized in [a, c]; such a point exists since f is continuous.
Moreover we must have m 6= a, c by the hypothesis. But now the image of (a, c) under f
contains m, but does not contain a neighborhood of m, so f cannot map open sets to open
sets.

The second case is completely analogous.

Problem 4B. Score:

Evaluate ∫ ∞
−∞

x− sinx

x3
dx.

Solution:
Integrate by parts twice to reduce to (1/6)

∫∞
−∞

sin(x)
x

dx, which is a standard example in
complex analysis.

Problem 5B. Score:



Suppose h(z) is entire, h(0) = 3 + 4i, and |h(z)| ≤ 5 whenever |z| < 1. What is h′(0)?

Solution: We have |h(0)| =
√

9 + 16 = 5, so |h(0)| ≥ |h(z)| for z ∈ D = {|z| < 1}. By
the maximum modulus principle this is only possible if h(z) is constant on D, which implies
that h′(0) = 0.

Problem 6B. Score:

Show that if A is an n× n complex matrix satisfying

|aii| >
∑
j 6=i

|aij|

for all i ∈ {1, . . . , n}, then A must be invertible.

Solution:
Assume Ax = 0 and choose i such that |xi| = maxj |xj|. Then

|aii||xi| ≤
∑
j 6=i

|aij||xj| ≤
∑
j 6=i

|aij||xi|

so that (
|aii| −

∑
j 6=i

|aij|

)
|xi| ≤ 0.

Since the first factor is positive by assumption and the second is nonnegative, we must have
xi = 0. By choice of i we must have x = 0 so A is invertible.

Problem 7B. Score:

For a real symmetric positive definite matrix A and a vector v ∈ Rn, show that∫
Rn

exp(−xTAx+ 2vTx) dx =
πn/2√
detA

exp(vTA−1v)

You may assume that
∫∞
−∞ e

−x2dx =
√
π.

Solution:
Complete the square, orthogonally diagonalize A, change variables, and integrate.



Problem 8B. Score:

Show that there are no natural numbers x, y ≥ 1 such that

x2 + y2 = 7xy.

Solution: Assume that there was such a solution. Taking remainders modulo 7 gives us

x2 + y2 ≡ 0 mod 7.

The quadratic remainders modulo 7 are 0, 1, 2, 4. The only two quadratic remainders whose
sum is ≡ 0 are 0 and 0. So

x2 ≡ y2 ≡ 0 mod 7.

It follows that x, y are both divisible by 7, i.e. x = 7x1, y = 7y1, for some natural numbers
x1, y1. It follows that

x21 + y21 = 7x1y1.

Repeating this process would produce an infinite sequence of pairs (x, y), (x1, y1), (x2, y2), . . .
such that xi and yi are strictly decreasing sequences of integers. Contradiction.

Problem 9B. Score:

Find the smallest n for which the permutation group Sn contains a cyclic subgroup of order
111.

Solution: Let the partition n = n1 +n2 + ...+nk represent the cycle structure of an element
g ∈ Sn, i.e. g is a products of commuting cycles of the lengths n1 ≤ n2 ≤ ... ≤ nk. The
order of the cyclic subgroup generated by g is obviously equal to the least common multiple
of n1, ..., nk. We want this least common multiple to be 111 = 3 · 37. One of the possibilities
is (n1, n2, ..., nk) = (3, 37) in which case n = 3 + 37 = 40. We claim that this value of n is
the minimal possible. Indeed, if 111 is the least common multiple of n1, ..., nk then each of
the prime factors 3, 37 divides at least one of the numbers ni and moreover, the sum of such
factors dividing ni does not exceed their product and thus does not exceed ni. This implies
n = n1 + ...+ nk ≥ 3 + 37 = 40.


