
Field Theory Qual Review

Robert Won
Prof. Rogalski

1 (Some) qual problems

• (Fall 2007, 5) Let F be a field of characteristic p and f ∈ F [x] a polynomial f(x) =
∑

i fix
i.

Give necessary and sufficient conditions on the {fi} for f(xp) to itself be a pth power, i.e.
∃g(x) such that f(xp) = g(x)p. In particular, prove that your condition is necessary.

• (Fall 2007, 6) Let F/K be a field extension of degree 2

a. If K is characteristic not 2, show that F/K is Galois.

b. Give an example where F/K is Galois even though charK = 2.

c. Give an example where F/K is not Galois.

• (Fall 2009, 3) Let F be a finite field of order q and E/F a field extension. Suppose that an
element a ∈ E is algebraic over F . Prove that [F (a) : F ] is the smallest positive integer n
such that aq

n
= a and that it divides every other such positive integer.

• (Fall 2009, 4) Let G be any finite group and F any field. Show that there exist fields L and E
with F ⊆ L ⊆ E, such that E is Galois over L with the Galois group of E/L being isomorphic
to G.

• (Fall 2009, 5) Consider the splitting field of E of the polynomial f(x) = x4 − 5 over Q.

a. Find the degree [E : Q]

b. Determine the Galois group of E over Q as a subgroup of S4.

• (Spring 2008, 4) Suppose that there exists an intermediate field L of the Galois extension
F/E of degree 2 over E. What can we say about Gal(F/E)?

• (Spring 2009, 4) Let a =
√

2 +
√

2 in C and let f be the minimal polynomial of a over Q.
Let E be the splitting field for f over Q. Determine the Galois group Gal(E/Q).

• (Spring 2009, 5) Let E/F be a Galois extension and let K,L be intermediate fields. Show
that K and L are F -isomorphic (i.e. there exists an isomorphism from K to L which is the
identity on F ) if and only if hte subgroups of G = Gal(E/F ) corresponding to K and L are
conjugate in G.
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2 (Some) field things to know

Throughout, F and K are fields.

• Basic facts and definitions. (characteristic, prime subfield, field extension, degree of a field
extension, field extensions generated by elements, primitive elements, algebraic extensions)

• The characteristic of F is either 0 or prime.

• Any homomorphism of fields is 0 or injective.

• Let p(x) ∈ F [x] be irreducible. Then there exists a field extension K/F in which p(x)
has a root. In particular, K = F [x]/p(x) and [K : F ] = n. If deg p(x) = n and θ = x
mod (p(x)) ∈ K then 1, θ, . . . , θn−1 are an F -basis for K.

• Let p(x) ∈ F [x] be irreducible. If K is an extension of F containing α a root of p(x) then
F (α) ∼= F [x]/p(x).

• Let ϕ : F → F ′ be an isomorphism of fields and p(x) ∈ F [x] be irreducible. Let p′(x) ∈ F ′[x]
be the irreducible polynomial obtained by applying ϕ to the coefficients. Let α be a root of
p(x) and β be a root of p′(x). Then there is an isomorphism

σ : F (α)→ F ′(β)

such that σ(α) = β and σ|F = ϕ.

• Let α be algebraic over F . Then there is a unique monic irreducible polynomial mα,F (x) ∈
F [x] which has α as a root. The polynomial mα,F (x) is called the minimal polynomial and
its degree is called the degree of α.

• If L/F is an extension of fields and α is algebraic over F and L then mα,L(x) divides mα,F (x)
in L.

• Let α be algebraic over F , then F (α) ∼= F [x]/(mα(x)) and [F (α) : F ] = degmα(x) = degα.

• The element α is algebraic over F if and only if F (α)/F is finite.

• If K/F is finite, then it is algebraic.

• If F ⊆ K ⊆ L are fields then [L : F ] = [L : K][K : F ].

• The extension K/F is finite if and only if K is generated by a finite number of algebraic
elements over F .

• If α and β are algebraic over F then α± β, αβ, α/β are all algebraic.

• Let L/F be an arbitrary extension. Then the collection of elements of L that are algebraic
over F form a subfield K of L.

• If K is algebraic over F and L algebraic over K then L is algebraic over F .
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• Let K1 and K2 be two finite extensions of a field F contained in K. Then

[K1K2 : F ] ≤ [K1 : F ][K2 : F ]

with equality if and only if an F -basis for one of the fields remain linearly independent over
the other field.

• Splitting fields exist and the splitting field of a polynomial is unique up to isomorphism.

• If K is an algebraic extension of F which is the splitting field over F for some collection of
polynomials, then K is called a normal extension of F .

• A splitting field of a polynomial of degree n has degree at most n!.

• A polynomial f(x) has a multiple root α if and only if α is also a root of its derivative. In
particular, f(x) is separable if and only if it is relatively prime to its derivative.

• Every irreducible polynomial over a field of characteristic 0 or a finite field is separable.

• If charF = p then (a+ b)p = ap + bp and (ab)p = apbp.

• Let p(x) be an irreducible polynomial over F a field of characteristic p. Then there exists a
unique integer k ≥ 0 and a unique irreducible separable polynomial psep(x) ∈ F [x] such that

p(x) = psep(xp
k
).

• Every finite extension of a perfect field is separable.

• Cyclotomic polynomials: Let ζn be a primitive nth root of unity.

The nth cyclotomic polynomial Φn(x) is the degree ϕ(n) polynomial whose roots are the
primitive nth roots of unity:

Φn(x) =
∏

ζprimitive

(x− ζ) =
∏

(a,n)=1

(x− ζan).

Φn(x) is a monic polynomial in Z[x] which is the unique irreducible monic polynomial of
degree ϕ(n).

xn − 1 =
∏
d|n

Φd(x)

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1.

• Let K/F be a field extension and α ∈ K algebraic over F . Then for any σ ∈ Aut(K/F ), σα
is a root of the minimal polynomial for α over F ; that is Aut(K/F ) permutes the roots of
irreducible polynomials

• |Aut(E/F )| ≤ [E : F ]
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• Galois extensions: K/F is Galois if any of the following equivalent conditions hold

(1) K/F is a splitting field of a collection of separable polynomials over F

(2) F is the precisely the set of elements fixed by Aut(K/F ) (in general, the fixed field may
be larger than F

(3) [K : F ] = |Aut(K/F )|
(4) K/F is finite, normal, and separable

• (Fundamental Theorem of Galois Theory) Let K/F be a Galois extension and G = Gal(K/F .
Then there is a bijection

{subfields E of K containing F} ←→ {subgroups H of G}

given by the correspondence

E → {the elements of G fixing E}

{the fixed field of H} ← H

which are inverse. Under this correspondence,

(1) E1 ⊆ E2 if and only if H2 ≤ H1

(2) [K : E] = |H| and [E : F ] = |G : H|
(3) K/E is Galois with Galois group H

(4) E/F is Galois if and only if H is normal. In this case, the Galois group of E/F is G/H.

(5) The intersection E1 ∩ E2 corresponds to the group 〈H1, H2〉 and the composite field
E1E2 corresponds to H1 ∩H2.

• Any finite field is isomorphic to Fpn which is the splitting field over Fp of the polynomial
xp

n − x, with cyclic Galois group of order n generated by the Frobenius automorphism σp.
The subfields of Fpn are the fields Fpd and are all Galois over Fp, they are the fixed fields of

σdp for d | n.

• The finite field Fpn is simple.

• The polynomial xp
n − x is the product of all the distinct irreducible polynomials in Fp[x] of

degree d where d runs across the divisors of n.

• The Galois group of the cyclotomic field Q(ζn) of nth roots of unity is isomorphic to the
multiplicative group (Z/nZ)×. The isomorphism is given by

(Z/nZ)× → Gal(Q(ζn)/Q)

a (mod n) 7→ σa

where σa(ζn) = ζan.

• The extension K/F is called abelian if K/F is Galois and Gal(K/F ) is abelian.

• If G is any finite abelian group, then there is a subfield K of the a cyclotomic field with
Gal(K/Q) ∼= G.
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