
Math. 553 Final Exam—Solutions Dec. 14, 2011

Please begin your solution to each problem 1–5 on a new sheet.

When answering any part of a problem you may assume you have done the preceding parts.

Notation: Z (resp. Q) is the ring of rational integers (resp. the field of rational numbers).

1. Let G be a group of order 105.

(a) Show that G has a normal subgroup of order 5 or 7. [points]:[4]

(b) Show that G has a cyclic normal subgroup of order 35. [4]

(c) Show that the Sylow 5- and 7-subgroups of G are both normal. [3]

(d) Classify groups of order 105. [4]

Solution. (a) If a Sylow 5-subgroup F is not normal, then it has 1+5k conjugates where

k ≥ 1 and 1 + 5k divides 105/5 = 21, whence 1 + 5k = 21 and there are 21 · 4 = 84 elements

of order 5. Similarly if a Sylow 7-subgroup S is not normal, then there are 15 · 6 = 90

elements of order 7. Since 84 + 90 > 105, at least one of F and S must be normal.

(b) Since at least one of F and S is normal, and (clearly) |F ∩S| = 1, therefore FS < G

is a subgroup of order 35. Since 5 doesn’t divide 7− 1, every group of order 35 is cyclic.

(c) The cyclic group FS has unique subgroups of orders 5 and 7, so it has 31 elements

of order 6= 5, and 29 elements of order 6= 7. Hence, and since |G| = 105, G cannot have

84 elements of order 5 or 90 of order 7; so by the proof of (a), both F and S are normal.

(d) As in (b), if T is the Sylow 3-subgroup, then, since S / G, therefore TS < G is

a subgroup of order 21, a complement of F / G. Since |Aut(F )| = 4, any homomorphism

TS → Aut(F ) is trivial; and consequently G is the direct product TS × F . There are, up

to isomorphism, just two groups of order 21, and one of order 5; correspondingly, there are

just two possibilities for G.

2. Let n > 1 be in Z, and let R := Z[
√
−n ].

For x = a+ b
√
−n ∈ R (a, b ∈ Z), set x̄ = a− b

√
−n, and define the norm

N(x) = xx̄ = a2 + nb2.

(a) Assuming x 6= 0, describe group isomorphisms R/xR ∼= R/x̄R ∼= xR/xx̄R. [4]

(b) Deduce from (a) that N(x)2 = [R : xR][xR : xx̄R] = [R : xR]2. [3]

(c) Deduce from (b) that if N(x) is prime in Z then x is prime in R. [4]

(d) Deduce from (c) that if p is a prime in Z then there is at most one way to represent p

in the form p = a2 + nb2 where a and b are positive integers. [4]

Solution. (a) The automorphism of R that takes any y ∈ R to ȳ induces the first

isomorphism. Multiplication by x induces the second (which is clearly surjective, and also

injective since if xy = xx̄z then, R being an integral domain, y = x̄z).

(b) Taking (a, b) ∈ Z× Z to a+ b
√
−n ∈ R gives a group isomorphism. For n > 0 ∈ Z,

there results an isomorphism Zn×Zn ∼= R/nR; so the cardinality |R/nR| = [R : nR] = n2.

In particular, for n = xx̄ one gets N(x)2 = [R : xx̄R] = [R : xR][xR : xx̄R] = [R : xR]2,

where the last equality holds by (a).

(c) If N(x)
(b)
= |R/xR| is prime, so that R/xR has no nontrivial proper subgroup, then

the ideal xR is maximal, hence prime, i.e., x is prime in R.



(d) By (c), if p = a2 + nb2 = xx̄ (x := a + b
√
−n) is a Z-prime then p = xx̄ is a

factorization of p into R-primes. By (b), any unit u + v
√
−n in R has norm ±1, i.e.,

u2 + nv2 = ±1, whence u = ±1 and v = 0. Since factorization into primes is unique up to

multiplying by units and permuting the factors, it follows that if p = a2 + nb2 = c2 + nd2

with a, b, c and d all positive then a = c and b = d.

3. (a) Prove that in Z[
√
−5 ], 7 is irreducible but not prime. [10]

(b) Is Z[
√
−5 ] a Principal Ideal Domain? (Justify your answer.) [5]

Solution. (a) By substituting y for x̄ in (a) and (b) of problem 2, one sees that

N(xy) = N(x)N(y). (You could also just say this was proved—differently—in class.)

If 7 = xy with neither x nor y a unit, then N(7) = 49 = N(x)N(y), and since N(x) > 1,

N(y) > 1 (cf. problem 2), therefore N(x) = N(y) = 7. But this can’t be, since a2 + 5b2 = 7

has no integer solution. Thus 7 is irreducible.

On the other hand, 7 divides (3 +
√
−5 )(3 −

√
−5 ) without dividing either factor; so

7 is not prime.

(b) Z[
√
−5 ] is not a Principal Ideal Domain, because Principal Ideal Domains are

Unique Factorization Domains, rings in which irreducible elements are always prime.

4. Let K be a finite field of cardinality q, let n > 0 be an integer relatively prime to q,

and let ζ be a primitive n-th root of unity lying in some field L ⊃ K with [L : K ] = m.

(a) Show that n divides qm − 1. [4]

(b) Show that [K(ζ) : K ] is the order of q in the group (Z/nZ)∗ (units in Z/nZ). [6]

Solution. (a) By the definition of “primitive n-th root of unity,” n is the order of ζ in

the multiplicative group L∗; so n
∣∣|L∗| = qm − 1.

(b) By (a), the order µ of q divides [K(ζ) : K ]. So K(ζ) contains a subfield L′ ⊃ K

such that [L′ : K ] = µ. The cyclic group L′∗ has order qµ − 1 divisible by n, so it contains

a cyclic subgroup of order n, and therefore it contains all the n solutions of Xn − 1, one of

which is ζ , whence L′ = K(ζ) and [K(ζ) : K ] = [L′ : K ] = µ.

5. Let f(X) = X6 + aX3 + 1 ∈ Z[X] be irreducible, and let G ⊂ S6 be its galois group.
(Analyzing possible factorizations, it is not hard to show—but you needn’t do so now—that f is reducible

⇐⇒ a = p3 − 3p for some p ∈ Z.)

Let F be a splitting field of f (over Q).

(a) Show that if |a| ≥ 2 then f has a real root x, and that with ω a primitive cube root

of unity, the other roots are ωx, ω2x, 1/x, ω/x, and ω2/x. [6]

(b) Show that G is isomorphic to the order-12 dihedral group D12. [10]

Hint. Show that there is an order-6 automorphism ψ of F with ψx = ω/x and ψω = ω2. Also, complex

conjugation gives an automorphism γ of order 2.

(c) For x as in (a), it is easily seen—and you may assume—that x+ 1/x, ωx+ 1/(ωx),

and ω2x+ 1/(ω2x) make up a single G-orbit, and are distinct roots of X3 − 3X + a.

Show that there are precisely three fields E ⊂ F such that [E : Q] = 3, that these are

conjugate to each other, and that each is generated over Q by a root of X3 − 3X + a. [9]

Total points:[80]



Solution. (a) A real cube root x of (−1 +
√
a2 − 4 )/2 is a root of f . It is easy to check

that if y is any root of f then ωy, ω2y, 1/y, ω/y, and ω2/y are also roots. Since y 6= 0,

therefore y 6= ωy and y 6= ω2y. If y = ωi/y (0 ≤ i ≤ 2) then y3 = 1/y3, so y3 = ±1, and

y6 + ay3 + 1 = 1± a+ 1 6= 0 because a = ±2 =⇒ f reducible. So y 6= ωi/y ; and as before

y 6= ωjy (j = 1, 2). Thus the roots are distinct, and (a) results.

(b) By (a), F = Q(x, ω); and since x is real and ω is not, and x is a root of a degree-6

irreducible polynomial, therefore

|G| = [F : Q ] = [Q(x, ω) : Q(x)][Q(x) : Q ] = 2 · 6 = 12.

The two automorphisms of Q(ω) extend to automorphisms of the splitting field F

(shown in class). An extension θ is uniquely determined by θ(x), which is a root of f ,

so there are at most six extensions, and there must be exactly six because F has twelve

automorphisms. In other words, for each root y of f , there is a θ with θ(x) = y. Thus the

nonidentity automorphism of Q(ω), which takes ω to ω2, extends to an automorphism ψ

of F with ψx = ω/x. Then

ψ2(x) = ψ(ω/x) = ω2/(ω/x) = ωx 6= x,

whence ψ4(x) = ω2x and ψ6(x) = x. Also ψ3(ω) = ω2 6= ω; and ψ6(ω) = ω. Hence ψ6 is

the identity, while ψ2 and ψ3 are not—that is, ψ has order 6. So ψ generates a cyclic

subgroup C ⊂ G, which is of index 2 and hence normal.

An easy calculation shows that γψγ−1 = ψ−1. (Just apply both sides to x and to ω.)

So γ is not contained in C (which is commutative), and hence generates a complement of C.
Thus G ∼= Z2 oφ Z6 where φ takes the generator of Z2 to the automorphism ξ 7→ ξ−1 of Z6,

that is, G ∼= D12.

(c) Fields E with [E : Q] = 3 correspond 1-1 to order-4 subgroups of G ∼= D12, i.e., to

Sylow 2-subgroups, of which there must be 1 or 3. There can’t be 1, because, e.g., D12 has

seven elements of order 2 (as one sees, e.g., by representing D12 as a group of symmetries

of a regular hexagon), each of which is contained in a Sylow 2-subgroup. So there are 3

subfields of degree 3, conjugate to each other (since that is true for the Sylow 2-subgroups).

The polynomial X3 − 3X + a is irreducible over Q, because it has the three given G-

conjugate roots. So any of these roots generates a degree-3 subfield, whose conjugates are

the subfields generated (respectively) by the other two roots. By the preceding paragraph,

these must be the three sought-after subfields.

Supplementary exercise. Prove that F has precisely three quadratic subfields,

generated by the square roots of −3, a2 − 4 and (−3)(a2 − 4), respectively.

Which one is the fixed field of C? Which contains the discriminant of f? Of X3−3X+a?


