Math. 553 Final Exam—Solutions DEec. 14, 2011

Please begin your solution to each problem 1-5 on a new sheet.

When answering any part of a problem you may assume you have done the preceding parts.

NOTATION: Z (resp. Q) is the ring of rational integers (resp. the field of rational numbers).

1. Let G be a group of order 105.

(a) Show that G has a normal subgroup of order 5 or 7. [points]: [4]
(b) Show that G has a cyclic normal subgroup of order 35. (4]
(c) Show that the Sylow 5- and 7-subgroups of G are both normal. (3]
(d) Classify groups of order 105. [4]

Solution. (a) If a Sylow 5-subgroup F is not normal, then it has 145k conjugates where
k > 1 and 14 5k divides 105/5 = 21, whence 1+ 5k = 21 and there are 21 -4 = 84 elements
of order 5. Similarly if a Sylow 7-subgroup S is not normal, then there are 15 -6 = 90
elements of order 7. Since 84 + 90 > 105, at least one of F' and S must be normal.

(b) Since at least one of F' and S is normal, and (clearly) |F'N.S| = 1, therefore F'S < G
is a subgroup of order 35. Since 5 doesn’t divide 7 — 1, every group of order 35 is cyclic.

(c) The cyclic group F'S has unique subgroups of orders 5 and 7, so it has 31 elements
of order # 5, and 29 elements of order # 7. Hence, and since |G| = 105, G cannot have
84 elements of order 5 or 90 of order 7; so by the proof of (a), both F' and S are normal.

(d) As in (b), if T is the Sylow 3-subgroup, then, since S < G, therefore T'S < G is
a subgroup of order 21, a complement of F < G. Since |Aut(F)| = 4, any homomorphism
TS — Aut(F) is trivial; and consequently G is the direct product T'S x F. There are, up
to isomorphism, just two groups of order 21, and one of order 5; correspondingly, there are
just two possibilities for G.

2. Let n > 1 be in Z, and let R:=Z[/—n].
For x =a+by/—n € R (a,b € Z), set T = a — b\/—n, and define the norm

N(z) = 2 = a® 4+ nb>.

(a) Assuming x # 0, describe group isomorphisms R/xR = R/TR = xR/xZR. [4]
(b) Deduce from (a) that N(x)? = [R: zR][zR: zzR] = [R : R]?. (3]
(¢) Deduce from (b) that if N(z) is prime in Z then z is prime in R. (4]

(d) Deduce from (c) that if p is a prime in Z then there is at most one way to represent p
in the form p = a? + nb® where a and b are positive integers. [4]

Solution. (a) The automorphism of R that takes any y € R to § induces the first
isomorphism. Multiplication by x induces the second (which is clearly surjective, and also
injective since if 2y = xZz then, R being an integral domain, y = Zz).

(b) Taking (a,b) € Z x Z to a + by/—n € R gives a group isomorphism. For n > 0 € Z,
there results an isomorphism Z,, x Z,, & R/nR; so the cardinality |R/nR| = [R : nR] = n?.
In particular, for n = z¥ one gets N(z)? = [R: 2ZR] = [R : 2R][zR : ZR] = [R : zR]?,
where the last equality holds by (a).

b
(¢) If N(x) © |R/xR)| is prime, so that R/zR has no nontrivial proper subgroup, then
the ideal xR is maximal, hence prime, i.e., x is prime in R.



(d) By (c), if p = a®> + nb?> = 2% (x := a + by/—n) is a Z-prime then p = 7 is a
factorization of p into R-primes. By (b), any unit u + vy/—n in R has norm =1, i.e.,
u? +nv? = £1, whence u = 1 and v = 0. Since factorization into primes is unique up to
multiplying by units and permuting the factors, it follows that if p = a? 4+ nb? = % 4 nd>?
with a, b, ¢ and d all positive then a = c and b = d.

3. (a) Prove that in Z[/—5], 7 is irreducible but not prime. [10]
(b) Is Z[v/—5] a Principal Ideal Domain? (Justify your answer.) (5]

Solution. (a) By substituting y for Z in (a) and (b) of problem 2, one sees that
N(zy) = N(z)N(y). (You could also just say this was proved—differently—in class.)

If 7 = zy with neither  nor y a unit, then N(7) = 49 = N(z)N(y), and since N(z) > 1,
N(y) > 1 (cf. problem 2), therefore N(z) = N(y) = 7. But this can’t be, since a? +5b* = 7
has no integer solution. Thus 7 is irreducible.

On the other hand, 7 divides (3 + /=5 )(3 — v/=5) without dividing either factor; so
7 is not prime.

(b) Z[v/=5] is not a Principal Ideal Domain, because Principal Ideal Domains are
Unique Factorization Domains, rings in which irreducible elements are always prime.

4. Let K be a finite field of cardinality g, let n > 0 be an integer relatively prime to g,
and let ¢ be a primitive n-th root of unity lying in some field L D K with [L: K] =m.

(a) Show that n divides ¢"™ — 1. [4]
(b) Show that [K(¢) : K] is the order of ¢ in the group (Z/nZ)* (units in Z/nZ). [6]

»

Solution. (a) By the definition of “primitive n-th root of unity,” n is the order of ¢ in
the multiplicative group L*; so n’ |L*| = ¢™ — 1.

(b) By (a), the order p of ¢ divides [K(¢) : K]. So K(¢) contains a subfield L' O K
such that [L’ : K] = p. The cyclic group L'* has order ¢ — 1 divisible by n, so it contains
a cyclic subgroup of order n, and therefore it contains all the n solutions of X™ — 1, one of

which is ¢, whence L' = K({) and [K(¢) : K] =[L' : K] = p.

5. Let f(X) = X%+ aX?+1 € Z[X] be irreducible, and let G C Sg be its galois group.
(Analyzing possible factorizations, it is not hard to show—but you needn’t do so now—that f is reducible
= a=1p> —3p for some p € 7.

Let F be a splitting field of f (over Q).

(a) Show that if |a| > 2 then f has a real root x, and that with w a primitive cube root
of unity, the other roots are wx, w?x, 1/x, w/z, and w?/z. (6]
(b) Show that G is isomorphic to the order-12 dihedral group Djs. [10]

Hint. Show that there is an order-6 automorphism 1 of F' with 1z = w/z and 1w = w?. Also, complex
conjugation gives an automorphism ~ of order 2.
(c) For z as in (a), it is easily seen—and you may assume—that = + 1/z, wz + 1/(wz),
and w?z + 1/(w?z) make up a single G-orbit, and are distinct roots of X3 — 3X + a.
Show that there are precisely three fields E C F such that [E : Q] = 3, that these are
conjugate to each other, and that each is generated over Q by a root of X3 — 3X + a. [9]

Total points: [80]



Solution. (a) A real cube root = of (—1++/a? —4)/2 is aroot of f. It is easy to check
that if y is any root of f then wy, w?y, 1/y, w/y, and w?/y are also roots. Since y # 0,
therefore y # wy and y # w?y. If y = w'/y (0 < i < 2) then y3 = 1/y3, so y> = £1, and
yS+ay> +1=1+a+1+#0 because a = £2 == f reducible. So y # w'/y; and as before
y # wly (j =1,2). Thus the roots are distinct, and (a) results.

(b) By (a), F = Q(x,w); and since z is real and w is not, and « is a root of a degree-6
irreducible polynomial, therefore

IGl =[F:Q] =[Q(z,w) : Q(2)][Q(z) : Q] =2-6 = 12.

The two automorphisms of Q(w) extend to automorphisms of the splitting field F
(shown in class). An extension 6 is uniquely determined by #(x), which is a root of f,
so there are at most six extensions, and there must be exactly six because F' has twelve
automorphisms. In other words, for each root y of f, there is a 6 with 6(x) = y. Thus the
nonidentity automorphism of Q(w), which takes w to w?, extends to an automorphism 1
of F with ¢ = w/xz. Then

wg(x) =Y(w/x) = wg/(w/x) =wzr # 1,

whence 9*(z) = w?z and ¥°(x) = z. Also ¥3(w) = w? # w; and ¥°%(w) = w. Hence ¢ is
the identity, while 12 and 13 are not—that is, ¢ has order 6. So 1/ generates a cyclic
subgroup C C G, which is of index 2 and hence normal.

An easy calculation shows that yiy~! = =1, (Just apply both sides to = and to w.)
So « is not contained in C (which is commutative), and hence generates a complement of C.
Thus G = Zy x4 Ze where ¢ takes the generator of Zs to the automorphism & — ¢! of Zg,
that iS, g = D12.

(c) Fields FE with [E : Q] = 3 correspond 1-1 to order-4 subgroups of G 2 Dy, i.e., to
Sylow 2-subgroups, of which there must be 1 or 3. There can’t be 1, because, e.g., D15 has
seven elements of order 2 (as one sees, e.g., by representing D5 as a group of symmetries
of a regular hexagon), each of which is contained in a Sylow 2-subgroup. So there are 3
subfields of degree 3, conjugate to each other (since that is true for the Sylow 2-subgroups).

The polynomial X3 — 3X + a is irreducible over Q, because it has the three given G-
conjugate roots. So any of these roots generates a degree-3 subfield, whose conjugates are
the subfields generated (respectively) by the other two roots. By the preceding paragraph,
these must be the three sought-after subfields.

Supplementary exercise. Prove that F has precisely three quadratic subfields,

generated by the square roots of —3, a®> — 4 and (—3)(a? — 4), respectively.

Which one is the fixed field of C? Which contains the discriminant of f? Of X2 —3X +a?




