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1 (Some) qual problems and (some) techniques

� (Spring 2008, 1) Let G be a finite group and H a proper subgroup. Show that G is not the
set-theoretic union of the conjugates of H.

Consider the intersection and count.

� (Spring 2008, 2) Classify all groups with 99 elements.

These types of problems are very common, so do a lot of these as practice. Your tools include
Sylow, semidirect products, etc.

� (Spring 2008, 3) Let p be prime. If |G| = pn and N is a normal subgroup, show that N
intersects the center of G nontrivially.

A normal subgroup is a union of conjugacy classes. Count.

� (Spring 2007, 1) Let p be a prime and G a group of order p3.

(a) Prove that G has a normal subgroup of order p2.

(b) Assume that G has a cyclic normal subgroup N of order p2 generated by some element
n. Let g be an element not in N .

i. If the order |g| of g is p3, classify the possible G up to isomorphism.

ii. If the order |g| of g is p, classify the possible G up to isomorphism

Use Sylow, semidirect products.

� (Fall 2007, 1) Let G be a group of order 240 = 24 · 3 · 5.

(a) How many p-Sylow subgroups might G have, for p = 2, 3, 5?

(b) If G has a subgroup of order 15, show that it has an element of order 15.

(c) Say G does not have a subgroup of order 15. Show that the number of 3-Sylows is 10 or
40.

Use Sylow, use Sylow again on the subgroup of order 15, semidirect products.

� (Fall 2006, 2.1) Let p be a prime number. (Z/p2Z)× denotes the multiplicative group con-
sisting of all congruence classes x̂ ∈ Z/p2Z such that gcd(x, p) = 1.

(a) Show that the order of ˆ1 + p in (Z/p2Z)× is equal to p.
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(b) Use (a) to construct a non-abelian group of order p3.

(c) Describe the non-abelian group in (b) via generators and relations.

Semidirect products, etc.

� (Fall 2006, 2.2) Let G be a group. Let r ≥ 2 be an integer. Assume that G contains a
non-trivial subgroup H of index [G : H] = r. Prove the following.

(a) If G is simple, then G is finite and |G| divides r!.

(b) If r ∈ {2, 3, 4}, then G cannot be simple.

(c) For all integers r ≥ 5, there exist simple groups G which contain non-trivial subgroups
H of index [G : H] = r.

If G is simple, act on cosets of H by multiplication to give an injection G → Sn. This is a
common technique when you are dealing with simple groups. Also see Dummit and Foote pp.
201-213.

2 (Some) group things to know

� Basic facts and definitions. (homomorphisms, isomorphism theorems, subgroups, normal sub-
groups, normalizers, centralizers, quotient groups, cyclic groups, dihedral groups, symmetric
groups, etc.)

� H ≤ G. Given a, b ∈ G, either aH = bH ⇔ a−1b ∈ H or aH ∩ bH = ∅. So cosets partition G
and |aH| = |H|.

� H E G. Then |G/H| = |G|/|H| = [G : H].

� K ≤ H, H ≤ G. Then [G : K] = [G : H][H : K].

� The kernel of a group homomorphism is a normal subgroup.

� G act on A, then for each g ∈ G, we get σg : A→ A. This σg is a permutation of A and the
map G→ Sa, g 7→ σg is a homomorphism.

� (Orbit-stabilizer) |Ox| = [G : Gx] = |G|/|Gx|.

� Automorphisms

If H E G, then G acts by conjugation on H as automorphisms of H. Also G/CG(H) ∼= a
subgroup of Aut(H).

For any H ≤ G, NG(H)/CG(H) ∼= a subgroup of Aut(H).

G/Z(G) ∼= subgroup of Aut(G).

p a prime =⇒ Aut(Zp) ∼= Zp−1.

� Isomorphism Theorems

First Isomorphism Theorem: If ϕ : G → H is a homomorphism, then ker ϕ E G and
G/ker ϕ ∼= ϕ(G).
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ϕ injective ⇐⇒ ker ϕ = 1

Second Isomorphism Theorem: A ≤ G, B ≤ G and A ≤ NG(B) (or B E G). Then AB ≤ G
and B E AB, A ∩B E A and AB/B ∼= A/A ∩B.

|AB| = |A||B|/|A ∩B|.
Third Isomorphism Theorem: H E G and K E G with H ≤ K. Then K/H E G/H and
G/K ∼= G/K.

� Characteristic subgroups

Characteristic subgroups are normal.

If H ≤ G is the unique subgroup of a given order, then H char G.

K char H and H E G =⇒ K E G.

� (Lagrange’s Theorem) G a finite group, H ≤ G, then |H| | |G|.

� (Cauchy’s Theorem) G a finite group and p a prime such that p | |G| then G has an element
of order p.

� (Sylow’s Theorem)

Sylow p-subgroups of G exist.

If P ∈ Sylp(G) and Q any p-subgroup of G, then Q ≤ gPg−1.
np ≡ 1 (mod p) and np = [G : NG(P )].

np = 1⇐⇒ P E G⇐⇒ P char G⇐⇒ All subgroups generated by elements of p-power order
are p-groups.

� (Fundamental Theorem of Finitely Generated Abelian Groups)

G ∼= Zr × Zn1 × · · · × Zns

Invariant factors: ni | ni+1for1 ≤ i ≤ s− 1

Elementary divisors

If n is the product of distinct primes, the only abelian group of order n is the cyclic group of
order n, Zn.

Zm × Zn ∼= Zmn ⇐⇒ (m,n) = 1.

� (Class equation)

|G| = |Z(G)|+
∑

i[G : CG(xi)] (one xi from each conjugacy class).

� Commutators

[x, y] = x−1y−1xy is called the commutator (= 1 iff x and y commute).

G′ = 〈[x, y] | x, y ∈ G〉 is the commutator subgroup (= 1 iff G abelian).

xy = yx[x, y].

H E G iff [H,G] ≤ H.

G′ char G and G/G′ is abelian (the largest abelian quotient).

If G′ ≤ H,H E G, then G/H is abelian
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� Direct products

If H,K E G and H ∩K = 1, then HK ∼= H ×K.

� Semidirect products

Let K,H be groups ϕ : K → Aut(H) a homomorphism. If σ : K → K is an automorphism
of K then

H oϕ K ∼= H oϕ◦σ K.

� p-groups

|P | = pa, p a prime, then:

1. The center of p is non-trivial:

2. H E P then H ∩ Z(P ) 6= 1. So every normal subgroup of order p is contained in the
center.

3. H < P then H < NP (H)

4. Every maximal subgroup of P is of index p and is normal in P .

� Upper central series

Z0(G) = 1, Zi+1(G)/Zi(G) = Z(G/Zi(G)) (so Zi+1(G) is the preimage in G of the center of
G/Zi(G) under the natural projection).

Zi(G) char G.

� Nilpotent groups

G is nilpotent if Zn(G) = G for some n. (So abelian groups are nilpotent).

If |P | = pa for prime a, then P is nilpotent. (p-groups have non-trivial center).

|G| = pa11 · · · pass , and Pi ∈ Sylpi(G). TFAE:

1. G nilpotent;

2. H < G then H < NG(H) (normalizers grow);

3. Pi E G;

4. G ∼= P1 × . . .× Ps.

Finite abelian group is direct product of its Sylow subgroups.

Finite group is nilpotent iff every maximal subgroup is normal

Subgroups and factor groups of nilpotent groups are nilpotent

� Lower central series

G0 = G, Gi = [G,Gi−1]. Then G0 ≥ G1 ≥ · · ·
A group is nilpotent iff Gn = 1 for some n.
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� Derived series (Commutator series)

G(0) = G, G(i+1) = [G(i), G(i)].

G(i) char G.

G is solvable iff G(n) = 1 for some n.

Nilpotent groups and subgroups of solvable groups are solvable

If G/N and N are solvable, then G is solvable.
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