
PROBLEMS IN COMPLEX ANALYSIS

SAMEER CHAVAN

1. A Maximum Modulus Principle for Analytic Polynomials

In the following problems, we outline two proofs of a version of Maximum Mod-

ulus Principle. The first one is based on linear algebra (not the simplest one).

Problem 1.1 (Orr Morshe Shalit, Amer. Math. Monthly). Let p(z) = a0 + a1z +

· · ·+ anz
n be an analytic polynomial and let s :=

√
1− |z|2 for z ∈ C with |z| ≤ 1.

Let ei denote the column n× 1 matrix with 1 at the ith place and 0 else. Verify:

(1) Consider the (n+1)×(n+1) matrix U with columns ze1+se2, e3, e4, · · · , en+1,

and se1 − z̄e2 (in order). Then U is unitary with eigenvalues λ1, · · · , λn+1

of modulus 1 (Hint. Check that columns of U are mutually orthonormal).

(2) zk = (e1)tUke1 (Check: Apply induction on k), and hence

p(z) = (e1)tp(U)e1.

(3) max|z|≤1 |p(z)| ≤ ‖p(U)‖ (Hint. Recall that ‖AB‖ ≤ ‖A‖‖B‖)
(4) If D is the diagonal matrix with diagonal entries λ1, · · · , λn+1 then

‖p(U)‖ = ‖p(D)‖ = max
i=1,··· ,n+1

|p(λi)|.

Conclude that max|z|≤1 |p(z)| = max|z|=1 |p(z)|.

Problem 1.2 (Walter Rudin, Real and Complex Analysis). Let p(z) = a0 + a1z+

· · · + anz
n be an analytic polynomial. Let z0 ∈ C be such that |f(z)| ≤ |f(z0)|.

Assume |z0| < 1, and write p(z) = b0+b1(z−z0)+· · ·+bn(z−z0)n. If 0 < r < 1−|z0|
then verify the following:

(1) 1
2π

∫ π
−π |p(z + reiθ)|2dθ = |b0|2 + |b1|2r2 + · · ·+ |bn|2r2n.

(2) 1
2π

∫ π
−π |p(z + reiθ)|2dθ ≤ |b0|2.

Conclude that if p is non-constant then max|z|≤1 |p(z)| = max|z|=1 |p(z)|.

Problem 1.3. Let f(z) =
∑∞
n=0 anz

n converges uniformly on the closed unit disc.

Show that max|z|≤1 |f(z)| = max|z|=1 |f(z)|.

2. Zeros of Analytic Polynomials

Problem 2.1 (Anton R. Schep, Amer. Math. Monthly). Let f : C → C be an

entire function such that f(z) 6= 0 for any z ∈ C. For a positive number r, verify

the following:

(1)
∫
|z|=r

dz
zf(z) = 2πi

f(0) , where |z| = r is traversed in counter clockwise direction.

(2)
∣∣∣∫|z|=r dz

zf(z)

∣∣∣ ≤ 2π
min|z|=r |f(z)| , and hence min|z|=r |f(z)| ≤ |f(0)|.

1



2 SAMEER CHAVAN

Deduce the fact that an analytic polynomial admits a zero in the complex plane

(known as Fundamental Theorem of Algebra) by verifying

|a0 + a1z + · · ·+ an−1z
n−1 + zn| ≥ |z|n(1− |an−1|/|z| − · · · − |a0|/|zn|).

Remark 2.2 : The conclusion in (2) is applicable to the exponential function.

What does it say ?

Theorem 2.3 (Rouché’s Theorem). Suppose that f and g are holomorphic in an

open set containing a circle C and its interior. If |f(z)| > |g(z)| for all z ∈ C, then

f and f + g have the same number of zeros inside the circle C.

We will prove Rouché’s Theorem in the next section. Let us use it to prove an

interesting statement about zeros of analytic polynomials.

Problem 2.4 (Jim Agler, Online Notes). Consider the analytic polynomial p(z) =

a0 + a1z + · · ·+ an−1z
n−1 + zn and let R :=

√
|a0|2 + · · ·+ |an−1|2 + 1. Verify:

(1) If R = 1 then the set of zeros of p(z) is singleton {0}, and hence contained

in any open disc with center 0.

(2) Assume R > 1. If |z| = R then

|zn − p(z)| < |zn|

(Hint. Use Cauchy-Schwarz inequality).

The set of zeros of p(z) is contained in the open disc with center 0 and radius R.

3. Argument Principle and its Consequences

For any non-zero complex number z = |z|eiθ, where θ is unique up to a multiple

of 2π, one may define argument of z as θ (θ is the “angle” between the X-axis

and the half-line starting at the origin and passing through z with positive counter

clockwise orientation). But then argument is not a function in the sense that it

is multi-valued (e.g. arg(1) is 0 as well as any integer multiple of 2π). However,

arg(z) := θ mod 2π (to be referred to as the principle branch of argument) defines

a well-defined function on the punctured plane C∗ := C \ {0}.

Problem 3.1. Show that arg : C∗ → [0, 2π) is not a continuous function. What is

the set of discontinuities of arg ?

Remark 3.2 : The restriction arg |C∗\[0,∞) is continuous. Thus we have a contin-

uous “branch” log : C∗ \ [0,∞)→ C of logarithm given by log z = log |z|+ arg(z).

Later we will see that a branch of logarithm always exists on any simply con-

nected domain not containing origin. On domains which are not simply connected,

it may be impossible to define a branch f logarithm. It is interesting to know in this

context that there exist analytic functions with an analytic branch of square-root

but without an analytic branch of logarithm.
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Problem 3.3 (Jim Agler, Online Notes). Consider f(z) = z2−1 on Ω := C\[−1, 1].

Let g : Ω→ C be defined by

g(z) := |f(z)|1/2ei(arg(z−1)+arg(z+1))/2.

Verify the following:

(1) g is a well-defined continuous function on Ω satisfying g2 = f.

(2) g is analytic (Hint. s ◦ g = f, where s(z) = z2 which is locally one-to-one

on the punctured plane C∗).

Show further that f does not have an analytic logarithm on Ω.

In an effort to understand (when one can define) logarithm of a holomorphic

function f : Ω→ C∗, we must understand the change in the argument

log f :=

∫
γ

f ′(z)

f(z)
dz (minus the modulus log |f(z)|)

of f as z traverses the curve γ. The argument principle says that for a closed curve

γ (that is a curve with same values at end-points), log f is completely determined

by the zeros and poles of f inside γ.

A function f on an open set Ω is meromorphic if there exists a sequence of points

A := {z0, z1, z2, · · · } that has no limit points in Ω, and such that

(1) the function f is holomorphic in Ω \A, and

(2) f has poles at the points in A.

Recall that a function f defined in a deleted neighborhood of z0 has a pole at z0, if

the function 1/f , defined to be zero at z0, is holomorphic in a full neighborhood of

z0. Equivalently, f has a pole at z0 if there exist a unique positive integer n (to be

referred to as the order of the pole) and a holomorphic function non-vanishing in a

neighborhood of z0 such that f(z) = (z − z0)−nh(z) holds in that neighborhood.

Theorem 3.4 (Argument Principle). Suppose f is meromorphic in an open set

containing a circle C and its interior. If f has no poles and zeros on C, then

1

2πi

∫
C

f ′(z)

f(z)
dz = nz(f)− np(f),

where nz(f) is the number of zeros of f inside C, np(f) is the number of poles of f

inside C, and the zeros and poles are counted with their multiplicities.

Outline of Proof. We need the formula(∏N
k=1 fk

)′∏N
k=1 fk

=

N∑
k=1

f ′k
fk
,

which may be proved by induction on N. For N = 1, it is trivial. Assuming the

formula for k = N − 1, by the product rule,(∏N
k=1 fk

)′∏N
k=1 fk

=

(∏N−1
k=1 fk

)′∏N−1
k=1 fk

+
f ′N
fN

=

N∑
k=1

f ′k
fk
.
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If f has a zero at z0 of order n then f(z) = (z− z0)ng(z) in the interior of C for

a non-vanishing function g. It is easy to see that
∫
C
f ′/f = n. Similarly, If f has a

zero at z0 of order n then
∫
C
f ′/f = −n. �

Outline of Proof of Rouché’s Theorem. Apply the Argument Principle to f + tg

for t ∈ [0, 1] to conclude that nz(ft) =
∫
C
f ′t(z)
ft(z)

dz is an integer-valued, continuous

function of t, and hence by Intermediate Value Theorem, nz(f0) = nz(f1), that is,

nz(f) = nz(f + g). �

Problem 3.5. Let f be non-constant and holomorphic in an open set containing

the closed unit disc. If |f(z)| = 1 whenever |z| = 1 then the following hold true:

(1) f(z) = 0 for z in the open unit disc (Hint. Maximum Modulus Principle).

(2) f(z) = w0 has a root for every |w0| < 1, that is, the image of f contains

the unit disc (Hint. Rouché’s Theorem).

Problem 3.6. Show that the functional equation λ = z + e−z (λ > 1) has exactly

one (real) solution in the right half plane.

Problem 3.7. Find the number of zeros of 3ez − z in the closed unit disc centered

at the origin.

4. Hurwitz’s Theorem

Theorem 4.1 (Hurwitz’s Theorem). Let {fn} be a sequence of nowhere-vanishing

holomorphic functions converging compactly to holomorphic f. Then either f = 0

or f is nowhere-vanishing.

Proof. Suppose f 6= 0. Let C be a circle enclosing a zero of f such that f does not

vanish on it. Note that fn (resp. f ′n) converges uniformly to f (resp. f ′) on C

(Justify). Apply now Argument Principle to f ′n/fn to get a contradiction. �

Problem 4.2. Show that at least one partial sum of the cosine series has a zero

in the disc with center and radius π/2.

Problem 4.3. Let {fn} be a sequence of injective holomorphic functions converging

compactly to holomorphic f. Show that either f constant or f is injective.

5. Open Mapping Theorem

Theorem 5.1 (Open Mapping Theorem). A non-constant holomorphic function f

on a open connected set Ω maps open sets to open sets.

Proof. Let w0 be such that w0 = f(z0) for some z0. Define g(z) := f(z) − w and

write g(z) = F (z)+G(z), where F (z) := (f(z)−w0), G(z) := (w0−w). Now choose

δ > 0 such that the closed disc centered at z0 and of radius δ is contained in Ω,

and f does not vanish on the circle |z| = δ. We then select ε > 0 so that we have

|f(z)− w0| ≥ ε on C. Now if |w − w0| < ε then |F (z)| > |G(z)| on |z| = δ, and by

Rouché’s Theorem, g(z) = F (z) +G(z) = 0 for some |z| < δ since F (z0) = 0. �
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Problem 5.2. Let Ω ⊆ C be an open set. Show that |Ω| := {|z| : z ∈ Ω} is

relatively open in non-negative real numbers R+ (Hint. Let U ⊆ Ω be open. Pick

up b ∈ |U | and fix a ∈ U such that |a| = b. Choose 0 < r < |a| such that Dr(a) ⊆ U.
Check that |Dr(a)| = (|a| − r, |a|+ r).)

Problem 5.3 (Maximum Modulus Principle for Open Mappings). Let f : Ω→ C be

an open mapping defined on open set Ω ⊂ C. Define |f | : Ω→ R+ by |f |(z) = |f(z)|.
Verify the following statements:

(1) |f | can not have a (local) maximum at a ∈ Ω.

(2) If Ω is compact and f is continuous on Ω then |f | attains a maximum on

the boundary of Ω.

Remark 5.4 : By the Open Mapping Theorem, we obtain Maximum Modulus

Principle for holomorphic functions.

Problem 5.5. Let D ⊆ C be a domain, B ⊆ D an open and bounded subset such

that B ⊆ D. If f is holomorphic in D then show that the boundary ∂(f(B)) of f(B)

is contained in f(∂B).

Conclude that this is not true if B is unbounded.

Problem 5.6 (Minimum Modulus Principle). Let f be a non-constant holomorphic

function on a bounded open set Ω such that f is continuous on Ω. Show that either

f has a zero in Ω or |f | assumes its minimum on the boundary of Ω.

6. Schwarz’s Lemma

Let f : D → D be a holomorphic function such that f(0) = 0. Then f(z) =∑∞
n=1 anz

n = zg(z), where g(z) =
∑∞
n=1 anz

n−1 is holomorphic on D. Note that

|f(z)| < 1, and hence |g(z)| < 1/|z| for every z ∈ D. Thus for |z| = r, |g(z)| ≤ 1/r.

Hence, by Maximum Modulus Principle, |g(z)| ≤ 1/r for every |z| ≤ r. Fixing z

and letting r ↑ 1, we obtain |g(z)| ≤ 1.

Theorem 6.1 (Schwarz’s Lemma). Let f : D→ D be a holomorphic function such

that f(0) = 0. Then |f(z)| ≤ |z| and |f ′(0)| ≤ 1. Moreover, f(z) = eiθz for some

θ ∈ [0, 2π) if either |f(z0)| = |z0| for some non-zero z0 ∈ D or |f ′(0)| = 1.

Proof. To see the remaining half, apply Maximum Modulus Principle to f(z)/z. �

Let us see some applications of Schwarz’s Lemma.

Corollary 6.2 (Automorphisms of Unit Disc). Every biholomorphism of the open

unit disc is one of the following: a rotation rθ(z) := eiθz for some θ ∈ [0, 2π),

ψa(z) := a−z
1−zā for some |a| < 1, or compositions of rθ and ψa.

Proof. Let f : D → D be a biholomorphism, that is, a holomorphic mapping such

that f is one-to-one, onto, and f−1 is holomorphic. Suppose f(a) = 0 for some

|a| < 1. Note that ψa maps D bijectively onto D with ψ−1
a = ψa. Set g := f ◦ ψa,

and note that g(0) = 0. By Schwarz’s Lemma, |g(z)| ≤ |z| for every |z| < 1.

Applying same argument to g−1, we obtain |g−1(z)| ≤ |z| for every |z| < 1. Hence,

by Schwarz’s Lemma, g is a rotation. �
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Problem 6.3 (Transitivity of the Automorphism Group). Show that the group

Aut(D) := {f : D→ D : f is a biholomorphism} of automorphisms of the open unit

disc is transitive, that is, for every a, b in the open unit disc, there exists f ∈ Aut(D)

such that f(a) = b.

Corollary 6.4 (A Fixed Point Theorem). Let f : D → D be a holomorphic func-

tion. Then either f(z) = z or f can have at most one fixed point.

Proof. Let a, b ∈ D such that f(a) = a and f(b) = b. Let g := ψa ◦ f ◦ψa, and note

that g maps D into D such that g(0) = 0. Also, if c := ψa(b) then g(c) = c. Since

a 6= b, c 6= 0. Hence, by Schwarz’s Lemma, g(z) = eiθz for some θ ∈ [0, 2π), and

hence f = ψa ◦ (eiθψa(z)). But then b = ψa(eiθc), and hence c = eiθc. It follows

that θ = 0, and f(z) = z. �

7. Simple Connectivity and Cauchy’s Theorem

Let γ0 and γ1 be two curves in an open set Ω with common end-points, that

is, γ0(a) = α = γ1(a) and γ0(b) = β = γ1(b). These two curves are said to be

homotopic in Ω if for each 0 ≤ s ≤ 1, there exists a curve γs in Ω defined on [a, b]

such that for every s ∈ [0, 1], , γs(a) = α, γs(b) = β, and for all t ∈ [a, b],

γs(t)|s = 0 = γ0(t), γs(t)|s=1 = γ1(t).

Moreover, γs(t) should be jointly continuous in s ∈ [0, 1] and t ∈ [a, b].

Remark 7.1 : Any two curves in a convex region are homotopic. One may take

γs(t) := (1− s)γ0(t) + sγ1(t).

Problem 7.2. Show that the complex plane minus a half-line is simply connected

(Hint. Use polar co-ordinates).

In this section, we discuss the following notions of simply connectedness:

(1) A region Ω is simply connected if any two curves in Ω with the same end-

points are homotopic.

(2) A region Ω is topologically simply connected if its complement in the Rie-

mann sphere is connected.

(3) A region Ω is holomorphically simply connected if whenever γ ⊆ Ω is closed

and f is holomorphic in Ω then
∫
γ
f(z)dz = 0.

It turns out that all these notions are equivalent [2, Appendix A]. Let us see an

argument that ensures the implication (3) implies (1). Suppose that Ω is holomor-

phically simply connected. If Ω = C, then it is clearly simply connected. If Ω is

not all of C, in view of the proof Riemann Mapping Theorem as presented in [2,

Chapter 8]), Ω is biholomorphically equivalent to the unit disc. Since the unit disc

is simply connected, the same must be true of Ω. The implication (1) implies (3)

follows from homotopic version of Cauchy’s Theorem.

Theorem 7.3 (Homotopy Version of Cauchy’s Theorem). If f is holomorphic in

Ω, then
∫
γ0
f(z)dz =

∫
γ1
f(z)dz whenever the two curves γ0 and γ1 are homotopic

in Ω.
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Proof. Note that F (s, t) = γs(t) is jointly continuous on [0, 1]× [a, b]. In particular,

K := F ([0, 1]× [a, b]) is compact. We divide the proof into following steps:

(1) There exists ε > 0 such that every disc of radius 3ε centered at a point in

K is completely contained in Ω (Justify).

(2) One can find δ > 0 so that

sup
t∈[a,b]

|γs1(t)− γs2(t)| < ε whenever |s1 − s2| < δ.

This is possible in view of the uniform continuity of F .

(3) Let s1, s2 be such that |s1 − s2| < δ. Choose discs {D0, · · · , Dn} of radius

2ε, and consecutive points {z0, · · · , zn+1} on γs1 and {w0, · · · , wn+1} on γs2
such that the union of these discs covers both curves, z0 = w0, zn+1 = wn+1,

and zi, zi+1, wi, wi+1 ∈ Di.

On each disc Di, let Fi denote a primitive of f. On the intersection of Di and

Di+1, Fi and Fi+1 are two primitives of the same function, so they must differ by a

constant, say ci. Therefore, Fi+1(zi+1)− Fi(zi+1) = Fi+1(wi+1)− Fi(wi+1), hence

Fi+1(zi+1)− Fi+1(wi+1) = Fi(zi+1)− Fi(wi+1).

It follows that
∫
γs1

f −
∫
γs2

f = Fn(zn+1)− Fn(wn+1)− (F0(z0)− F0(w0)) = 0.

We can now complete the proof. By subdividing [0, 1] into subintervals [si, si+1]

of length less than δ, we may go from γ0 to γ1 by finitely many applications of the

above argument. �

Remark 7.4 :
∫
γ
f(z)dz = 0 for any closed curve γ that is homotopic to a constant

curve in Ω.

Problem 7.5. Show that the complex plane minus a finite non-empty set is not

simply connected.

Let us derive a variant of the Cauchy integral formula as an application. Let f

be a function holomorphic on an open set containing a circle and its interior. Let

Cz be a circle centered at z such that Cz is contained in the interior of C. Since
f(w)
w−z is holomorphic except at z, by the preceding theorem,

1

2πi

∫
C

f(w)

w − z
dw =

1

2πi

∫
C′

f(w)

w − z
dw

=
1

2πi

∫
C′

f(w)− f(z)

w − z
dw +

1

2πi

∫
C′

f(z)

w − z
dw,

which equals f(z) by Cauchy’s Theorem since f(w)−f(z)
w−z is holomorphic inside C ′

with removable singularity at z.

Theorem 7.6 (Existence of a Primitive). Any holomorphic function f in a simply

connected domain Ω has a primitive.

Proof. Fix a point z0 in Ω. Define F (z) =
∫
γ
f(w)dw, where γ is any curve in Ω

joining z0 to z. By the preceding theorem, the definition of F is independent of the

choice of γ. To see that F ′ = f, note that by another application of the preceding
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theorem, one can write F (z+h)−F (z) =
∫

[z,z+h]
f(w)dw, where [z, z+h] denotes

the line segment joining z to z + h. It follows that∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ ∫ 1

0

|f((1− t)z + t(z + h))− f(z)|dt,

which converges to 0 as h→ 0. �

Theorem 7.7 (Existence of a Logarithm). If f is a nowhere vanishing holomorphic

function in a simply connected region Ω, then there exists a holomorphic function

F on Ω such that f(z) = eF (z).

Proof. Fix a point z0 in Ω. Define F (z) =
∫
γ
f ′(w)
f(w) dw+ c0, where γ is any curve in

Ω joining z0 to z, and c0 satisfies ec0 = f(z0). By the homotopy version of Cauchy’s

Theorem, the definition of F is independent of the choice of γ. It is easy to see that

F ′(z) = f ′(z)/f(z). But then (fe−F )′ = 0, so that f(z) = ceF (z) for some constant

c. By the choice of c0, we obtain c = ec0−g(z0) = 1, and hence f(z) = eF (z). �

Corollary 7.8 (Irving Glicksberg, Amer. Math. Monthly). Suppose f and g are

meromorphic in a neighborhood of the closed disc |z−a| ≤ R with no zeros or poles

on |z − a| = R. If |f(z) + g(z)| < |f(z)|+ |g(z)| on |z − a| = R, then

nz(f)− np(f) = nz(g)− np(g).

Proof. Since |f(z)/g(z) + 1| < |f(z)/g(z)| + 1 holds on |z − a| = R, f/g maps

|z−a| = R into the simply connected region Ω := C\ (−∞, 0]. By the last theorem,

log has a valid branch on Ω. Consider h(z) := log(f(z)/g(z)) defined on some

neighborhood of γ. Consider the closed curve γ(t) := f(eit)/g(eit) for t ∈ [0, 2π) in

Ω. By the previous theorem,
∫
γ

1
zdz = 0, that is,∫

γ

(f/g)′

f/g
dz =

∫
γ

(
f ′

f
− g′

g

)
dz.

Now apply the Argument Principle. �

Remark 7.9 : Note that if |h(z)| < |h(z) + g(z)|+ |g(z)| on |z − a| = R, then

nz(h+ g)− np(h+ g) = nz(g)− np(g).

Thus we obtain a generalization of Rouché’s Theorem.

8. Range of a Holomorphic Function

Problem 8.1. Show that the range of a non-constant entire function is dense in

C (Hint. Negation plus Liouville Theorem).

Problem 8.2. Show that there exists no non-constant, entire function with range

contained in the complement of any half-line.

Theorem 8.3 (Casorati-Weierstrass Theorem). Suppose f is holomorphic in the

punctured disc centered at z0 and has an essential singularity at z0. Then, the

image of the punctured disc under f is dense in the complex plane.
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Proof. If possible then the image of the punctured disc under f misses an open disc

of radius R centered at some point w. Note that |f(z)−w|
|z−z0| ≤

R
|z−z0| →∞ as z → z0.

This shows that f(z)−w
z−z0 has pole at z0. Let m ≥ 1 be the order of the pole. Then

|f(z)− w||z − z0|m → 0 as z → z0. But then by triangle inequality,

|f(z)||z − z0|m → 0 as z → z0.

Thus f(z)(z − z0)m−1 has removable singularity at z0, which contradicts the hy-

pothesis that f has essential singularity at z0. �

Recall that a continuous f : U → V is proper if pre-image under f of any compact

subset of V is compact, where U and V are subsets of C. Any homeomorphism is

proper.

Lemma 8.4. Let f : C→ C be a continuous mapping. Then f is a proper mapping

if and only if lim
|z|→∞

|f(z)| =∞.

Proof. Suppose {f(zn)} is bounded for some unbounded sequence {zn}. Let K ≡
{f(zn)}. Then K is compact while the inverse image of K under f consists un-

bounded {zn}. Hence, f can not be proper. Conversely, if the inverse image K of

a compact set under f is not compact then K being closed must be unbounded,

which is impossible if lim|z|→∞ |f(z)| =∞. �

Remark 8.5 : Note that any non-constant analytic polynomial p in one variable

is proper.

Corollary 8.6. An entire function f is proper if and only if it is an analytic

polynomial.

Proof. For a entire, proper function f, suppose the function g holomorphic in C∗

given by

g(z) ≡ f
(

1

z

)
(z ∈ C∗)

has essential singularity at z = 0. Then, the Casorati-Weierstrass Theorem implies

that for any δ > 0, g(A1(0, 0, δ)) is dense in C, where A1(0, 0, δ) is the punctured

disc in C of radius δ centered at 0. However, g
(
A1(0, 0, δ)

)
= f

(
A1
(
0, 1

δ ,∞
))
, so

that for any w ∈ C, one can choose zn ∈ A1 (0, n,∞) such that f(zn) lies in the disc

centered at w of radius 1
n . It follows that lim

n→∞
|f(zn)| = |w| with limn→∞ |zn| =∞,

which clearly contradicts the assumption that f is proper in view of Lemma 8.4.

Hence, g has either a removable singularity or a pole at 0. Accordingly, either g is

a constant or a non-constant analytic polynomial. �

Problem 8.7 (Automorphisms of C). The group

{f : C→ C : f is entire with entire inverse}

of automorphisms of C equals {az + b : a ∈ C∗, b ∈ C}.
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9. Zeros of Analytic Polynomials in Several Variables

Let p be an analytic polynomial in n complex variables z1, · · · , zn. The zero set

Z(p) of p is given by

Z(p) := {(z1, · · · , zn) ∈ Cn : p(z1, · · · , zn) = 0}.

The Fundamental Theorem of Algebra states that the zero set Z(p) of any analytic

polynomial p in one variable is non-empty. This simple looking fact has several

notable consequences. Firstly, the zero set Z(p) of a non-zero analytic polynomial

p in more than one variable has empty interior. For simplicity, assume that the

number of variables is two. Suppose contrary to this, Z(p) contains some poly-

disc D(a,R) × D(b, R) for some (a, b) ∈ Z(p), so that for every z ∈ D(a,R), the

one-variable analytic polynomial p(z, ·) admits infinitely many solution. By Fun-

damental Theorem of Algebra, p(z, ·) must be identically zero forcing p = 0.

Problem 9.1. The set of n×n matrices with determinant equal to is dense in the

space of n× n complex matrices.

Secondly, unlike the one-variable situation, the zero set of a non-constant analytic

polynomial in several variables is never compact.

Theorem 9.2. The zero set of any non-constant analytic polynomial in at least

two variables is unbounded. In particular, it contains infinitely many points.

Proof. Let a positive number M be given. Without loss of generality, assume that

p is dependent of zn, and set pz′(zn) = p(z′, zn) =
∑m
j=1 cj(z

′)zjn. Let cj denote

the non-zero coefficient of zjn (j 6= 0) in pz′ . Since cj are polynomials in z′, by the

discussion prior to Theorem 9.2, the intersection Z of the zero sets of cj (j 6= 0) has

empty interior. Thus one may choose w′ ∈ Cn−1 \ Z with ‖w′‖2 > M, so that pw′

is a non-constant analytic polynomial in zn. By Fundamental Theorem of Algebra,

there exists wn ∈ C such that pw′(wn) = 0. Thus p(w′, wn) = 0 with

‖(w′, wn)‖2 ≥ ‖w′‖2 > M,

which completes the proof of the theorem. �

On the other hand, the zero set of a non-constant real polynomial in more than

one real variable need not be unbounded: p(x, y) = x2 + y2 − 1.

Corollary 9.3. A non-constant analytic polynomial in n variables is proper if and

only if n = 1.

Another striking difference between one and several variable theories is that the

zeroes of non-constant analytic polynomials in more than one complex variable are

never isolated.

Problem 9.4. Let p be a non-constant analytic polynomial in more than one vari-

able. Show that any open neighborhood of a zero of p contains infinitely many zeros

of p (Hint. Argue as in the proof of Theorem 9.2).
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Theorem 9.5. Let p denote an analytic polynomial in n variables. Then Cn \Z(p)

is path-connected.

Proof. The idea of the following proof is well-known (see, for instance, [3]). Let

z, w ∈ Cn \ Z(p). Consider the straight-line path

γ(t) = (1− t)z + tw (t ∈ C).

Note that {t ∈ C : γ(t) ∈ Z(p)} is precisely the zero set Z(p ◦ γ) := Z. However, Z

is a finite subset of C. Thus γ maps the path-connected set C \Z continuously into

Cn \ Z(p). In particular, z and w belong to the path-connected subset γ(C \ Z) of

Cn \ Z(p). �

Problem 9.6. Show that the general linear group GLn(C) is path-connected.
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