10	In order to send an undetected message to an agent in the field, each letter in the message is replaced by the								
	number of its position in the alphabet and that number is entered in a matrix M . Thus, for example, "DEAD" becomes the matrix $M = \begin{pmatrix} 4 & 5 \\ 1 & 4 \end{pmatrix}$. In order to further avoid detection, each message with four letters is sent to the agent encoded as MC , where $C = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$. If the agent receives the matrix $\begin{pmatrix} 51 & -3 \\ 31 & -8 \end{pmatrix}$, then the message is								
	(A) RUSH (E) not uniquely de	(B) COM termined by the info) ROME	(D) CALL				
48.	Let V be the set of all real polynomials $p(x)$. Let transformations T, S be defined on V by								
	$T: p(x) \to xp(x)$ and $S: p(x) \to p'(x) = \frac{d}{dx}p(x)$, and interpret $(ST)(p(x))$ as $S(T(p(x)))$								
	Which of the following is true?								
	 (A) ST = 0 (B) ST = T (C) ST = TS (D) ST - TS is the identity map of V onto itself. (E) ST + TS is the identity map of V onto itself. 								
	15. If f is a linear transformation from the plane to the real numbers and if $f(1, 1) = 1$ and $f(-1, 0) = 2$, then $f(3, 5) =$								
	(A) -6	(B) -5	(C) 0	(D) 8	(E) 9				
	If M is the matrix $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ (E) none of the above	(B) $\begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$	1	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	(D) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$				
	(E) none of the abov								
35	The rank of the mat	rix							
	$\begin{pmatrix} 1 & 2 & 3 & 6 \\ 6 & 7 & 8 & 6 \\ 11 & 12 & 13 & 14 \\ 16 & 17 & 18 & 19 \\ 21 & 22 & 23 & 26 \end{pmatrix}$	4 5 9 10 4 15 9 20 4 25							
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5				
32	The dimension of the		1 .1 .101						
	$\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \\ 3 \\ 3 \end{pmatrix},$	$\begin{pmatrix} 1\\2\\0\\8 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix} $ is			72			
	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6				

52	Which of the following is the larger of the eigenvalues (characteristic values) of the matrix $\begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix}$?									
	(A) 4	(B) 5	(C) 6	(D) 10	(E) 12					
53	Let V be the vector space, under the usual operations, of real polynomials that are of degree at most 3. Let W be the subspace of all polynomials $p(x)$ in V such that $p(0) = p(1) = p(-1) = 0$. Then dim $V + \dim W$ is									
	(A) 4	(B) 5	(C) 6	(D) 7	(E) 8					