
MATH 185: COMPLEX ANALYSIS

FALL 2009/10

PROBLEM SET 7 SOLUTIONS

1. Let β ∈ C.
(a) Show that for all n = 0, 1, 2, . . . ,(

βn

n!

)2

=
1

2πi

∫
∂D(0,1)

βneβz

n!zn+1
dz.

Solution. Applying generalized Cauchy’s integral formula, we get

1

2πi

∫
∂D(0,1)

βneβz

n!zn+1
dz =

βn

n!

[
1

2πi

∫
∂D(0,1)

eβz

zn+1
dz

]
=
βn

n!
× 1

n!

dn

dzn
eβz
∣∣∣∣
z=0

=

(
βn

n!

)2

.

(b) Show that
∞∑
n=0

(
βn

n!

)2

=
1

2π

∫ 2π

0
e2β cos θ dθ.

[Hint : Consider power series expansion of eβ/z and apply (a) on z−1eβ(z+1/z).]
Solution. Note that

eβ/z =
∞∑
n=0

βn

n!zn
.

Multiplying by eβz and dividing by z, we get

1

z
eβ(z+1/z) =

∞∑
n=0

βneβz

n!zn+1
.

Integrating about ∂D(0, 1) and using (a), we get

1

2πi

∫
∂D(0,1)

1

z
eβ(z+1/z) dz =

∞∑
n=0

βn

n!

[
1

2πi

∫
∂D(0,1)

eβz

zn+1
dz

]
=

∞∑
n=0

(
βn

n!

)2

Evaluating the line integral about the path z : [0, 2π] → C, z(θ) = eiθ and noting that
eiθ + e−iθ = 2 cos θ we get

1

2πi

∫
∂D(0,1)

1

z
eβ(z+1/z) dz =

1

2πi

∫ 2π

0
e2β cos θ dθ.

2. Let f : C→ C be an entire function. Let a ∈ R be an arbitrary constant.
(a) Show that if Re f(z) ≤ a for all z ∈ C, then f is constant.
(b) Show that if Re f(z) ≥ a for all z ∈ C, then f is constant.
(c) Show that if [Re f(z)]2 ≤ [Im f(z)]2 for all z ∈ C, then f is constant.
(d) Show that if [Re f(z)]2 ≥ [Im f(z)]2 for all z ∈ C, then f is constant.
(e) Suppose h is another entire functions and suppose there exists an a ∈ R, a > 0, such that

Re f(z) ≤ aReh(z) for all z ∈ C. Show that there exist α, β ∈ C such that

f(z) = αh(z) + β

for all z ∈ C.
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[Hint : if f and g are both entire, then so are f ◦ g and g ◦ f ; find an appropriate g so that you
may apply Liouville’s theorem.]
Solution. Note that ex is a monotone increasing function on R.
• For (a), we choose g(z) = ez and note that |ef(z)| = |eRe f(z)ei Im f(z)| = eRe f(z) ≤ ea.
• For (c), we choose g(z) = ez

2
and note that |ef(z)2 | = |e[Re f(z)]2−[Im f(z)]2e2iRe f(z) Im f(z)| =

e[Re f(z)]2−[Im f(z)]2 ≤ e0 = 1.
Applying Liouville’s theorem then implies that ef(z), ef(z)2 are constant functions. To show that
f must also be a constant function, we differentiate ef(z) to get

0 = (ef(z))′ = f ′(z)ef(z).

Since ef(z) is never zero, we get f ′(z) = 0 and so f must be a constant function in (a). The same
argument shows for (c) that f2 must be a constant function and therefore f must be a constant
function (since it is continuous). (b) could be deduced from (a) and (d) could be deduced from
from (c) by applying (a) and (c) to −f . For (e), we just apply (a) to the entire function f − ah,
which by assumption satisfies Re f(z)− aReh(z) ≤ 0 for all z ∈ C.

3. Let f : C→ C be an entire function.
(a) Suppose there exists α, β ∈ C× such that α/β /∈ R. Show that if f satisfies the following

conditions

f(z + α) = f(z), f(z + β) = f(z)

for all z ∈ C, then f is constant.
Solution. Given any real number x ∈ R, we will write [x] for the integral part of x and
〈x〉 for the fractional part of x. For example [−5.12] = −5 and 〈−5.12〉 = 0.12. Note that
[x] ∈ Z, 〈x〉 ∈ [0, 1), and x = [x] + 〈x〉 for all x ∈ R. The condition α/β /∈ R implies
that α, β span C as a real vector space of dimension 2. In other words, any z ∈ C may
be written as z = xα + yβ where x, y ∈ R. Observe that the two conditions given may be
applied recursively to obtain

f(z) = f(xα+ yβ)

= f(α〈x〉+ β〈y〉+ α[x] + β[y])

= f(α〈x〉+ β〈y〉).

for any z = xα+yβ ∈ C. Note that for any z = xα+yβ ∈ C, α〈x〉+β〈y〉 ∈ [0, α)× [0, β) ⊆
[0, α]× [0, β], ie. the closed parallelogram bounded by the line segments from 0 to α and 0
to β and this is compact, and so

sup
z∈C
|f(z)| = sup

z∈[0,α)×[0,β)
|f(z)| ≤ max

z∈[0,α]×[0,β]
|f(z)|.

The last term is finite by the Extreme Value Theorem in Math 104 (since [0, α]× [0, β] is
compact and f is analytic, therefore continuous) and so f is bounded. Liouville’s theorem
then implies that f is constant.

(b) Suppose

lim
|z|→∞

f(z)

z
= 0.

Show that f is a constant function.
Solution. Define g : C→ C by

g(z) :=


f(z)− f(0)

z − 0
z 6= 0,

f ′(0) z = 0.
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By Corollary 4.4, g is an entire function too. Now,

lim
|z|→∞

|g(z)| = lim
|z|→∞

∣∣∣∣f(z)

z

∣∣∣∣ = 0.

Let ε > 0. Then there exists R > 0 such that

|g(z)| < ε

for all |z| ≥ R. In particular, |g(z)| < ε for all z ∈ ∂D(0, R). Applying maximum modulus
theorem (or Corollary 4.15), we get

max
z∈D(0,R)

|g(z)| = max
z∈∂D(0,R)

|g(z)| ≤ ε.

Therefore |g(z)| ≤ ε for all z ∈ C. Since ε is arbitrary, we conclude that

g(z) = 0

for all z ∈ C. Hence f(z) = f(0) for all z ∈ C and so f is a constant function.
(a) Find all entire functions f that satisfy

f ′′
(

1

n

)
+ f

(
1

n

)
= 0

for all n ∈ N.
Solution. Note that if f is an entire function, then so is f ′′. In particular, f ′′ + f is
continuous and so

f ′′(0) + f(0) = lim
n→∞

[
f ′′
(

1

n

)
+ f

(
1

n

)]
= 0.

Hence f ′′ + f is zero on a subset of C with limit points, namely, {n−1 | n ∈ N} ∪ {0} and
thus by the uniqueness theorem, f ′′ + f ≡ 0 on the whole of C. Now since f is entire, its
Taylor series expansion about 0 that converges everywhere in C, and is given by

f(z) =
∞∑
n=0

f (n)(0)

n!
zn.

Likewise for f ′′, we have

f ′′(z) =

∞∑
n=0

f (n+2)(0)

n!
zn.

Hence, for all z ∈ C,

f ′′(z) + f(z) =
∞∑
n=0

[
f (n+2)(0)

n!
+
f (n)(0)

n!

]
zn.

Now since f ′′ + f ≡ 0, we must have f (n+2)(0) = −f (n)(0) for all n ∈ N ∪ {0}, ie.

f(0) = −f ′′(0) = · · · = (−1)nf (2n)(0) = · · ·

f ′(0) = −f ′′′(0) = · · · = (−1)nf (2n+1)(0) = · · · .
Hence

f(z) =
∞∑
n=0

f (n)(0)

n!
zn

= f(0)

∞∑
n=0

(−1)n

(2n)!
z2n + f ′(0)

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

= f(0) cos z + f ′(0) sin z.
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Note that the ‘splitting’ of the first power series into a sum of two power series is permissible
because all three series have infinite radius of convergence. Hence an entire function that
satisfies the given condition must be of the form

f(z) = f(0) cos z + f ′(0) sin z.

(b) Let n ∈ N and n ≥ 2. Find all entire functions f that satisfy

f(zn) = [f(z)]n

for all z ∈ C.
Solution. By Theorem 4.3, f has a power series expansion

f(z) =
∞∑
m=0

amz
m

with infinite radius of convergence. By the given condition

a0 = f(0) = fn(0) = an0

and so either a0 = 0 or a0 = e
2pπi
n−1 for some p ∈ {1, . . . , n− 1}.

Case I. Suppose a0 = e
2pπi
n−1 for some p ∈ {1, . . . , n− 1} and f is non-constant. Let k ∈ N

be the smallest positive number such ak 6= 0. Hence

f(zn) = 1 + akz
kn + higher order terms

and
[f(z)]n = 1 + nakz

k + higher order terms.

Since f(zn) = [f(z)]n, comparing coefficients tells us that nak = 0 and so ak = 0 — a

contradiction. In other words, if a0 = e
2pπi
n−1 for some p ∈ {1, . . . , n − 1}, then f must be a

constant function. Hence f(z) = a0 = e
2pπi
n−1 for all z ∈ C.

Case II. Suppose a0 = 0 and f is non-constant. Again we let k be as above and observe
that

f(z) = zk[ak + ak+1z + ak+2z
2 + · · · ] =: zkg(z).

Note that g and f must have the same radii of convergence since

lim sup
n→∞

n
√
|an| = lim sup

n→∞
n
√
|an+k|

and hence g is also an entire function. Also f(zn) = [f(z)]n implies

znkg(zn) = znk[g(z)]n

and so g(zn) = [g(z)]n. In other words, g satisfies the conditions of Case I. Hence g is a

constant function and g(z) = e
2pπi
n−1 for some p ∈ {1, . . . , n − 1}. Therefore f(z) = e

2pπi
n−1 zk

for all z ∈ C.
Combining Cases I and II, we see that an entire function that satisfies the given condition

must be of the form f(z) = e
2pπi
n−1 zk for k = 0, 1, 2, . . . and p ∈ {1, . . . , n− 1}.

4. Let Ω ⊆ C be a region. Let f be analytic on Ω and let z0 ∈ Ω. Suppose f ′(z0) 6= 0. Show that
there is an r > 0 such that ∫

Γ

f ′(z0)

f(z)− f(z0)
dz = 2πi

where Γ = ∂D(z0, r).
Solution. We know that there is an R > 0 such that f has a Taylor series expansion about
z0. So

f(z) = f(z0) + a1(z − z0) +

∞∑
n=2

an(z − z0)n
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holds for all z ∈ D(z0, R). Now since a1 = f ′(z0) 6= 0 and since f ′ is continuous at z0,
there is an δ > 0 such that f(z) − f(z0) 6= 0 for all z ∈ D(z0, δ)\{z0} (if not, we can find a
sequence zn → z0, zn 6= z0, such that f(zn) − f(z0) = 0 for all n ∈ N — this will imply that
0 = limn→∞(f(zn)− f(z0))/(zn − z0) = f ′(z0), a contradiction). Let r = min{R, δ} and let the
function g : D(z0, r)→ C be defined by

g(z) =


f(z)− f(z0)

z − z0
z 6= z0,

f ′(z0) z = z0.

Now observe that g is analytic in D(z0, r) by a result in the lectures. Furthermore, g is non-zero
on D(z0, r). Hence the function h : D(z0, r)→ C defined by

h(z) =
1

g(z)

is analytic on D(z0, r). Cauchy’s integral formula applied to h yields

1

2πi

∫
Γ

h(z)

z − z0
dz = h(z0)

but since

h(z) =


z − z0

f(z)− f(z0)
z 6= z0,

1

f ′(z0)
z = z0,

we get
1

2πi

∫
Γ

1

f(z)− f(z0)
dz =

1

f ′(z0)
and thus ∫

Γ

f ′(z0)

f(z)− f(z0)
dz = 2πi

as required.
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