
Math 871 - Section 001 - Fall 2013 - Problem Sets

PS1: 1.2cgkmpq, 2.1, 2.2, 6.2, 7.1, 7.5aei, 13.3, 13.4 

Due 9/5/13 for grading: 2.2b, 13.4ac

PS2: PS2.1, 18.3, 18.5, PS2.2, 13.8
PS2.1: Let X and Y both be the set R of real numbers, let Tip be the included point topology

(where 0 is the "included point") on X, and let Tfc be the finite complement topology on Y.

Determine whether or not the topological spaces (X,Tip) and (Y,Tfc) are homeomorphic. (As

always, be sure to prove your answer.)

PS2.2: 

(a) Show that for any set X, the set B:={U ⊆ X | X-U is infinite} ∪ {X} is a basis for a topology

on X. 
(b) For every X the topology T(B) generated by the basis in part (a) is a topology we have already

run into! Which ones? (Prove your answer!)

Due 9/12/13 for grading: PS2.1, PS2.2

PS3: 16.1, 16.3, PS3.1, 19.2, 19.10, 18.4, PS3.2
PS3.1: A map f : X → Y is said to be an open map if for every open set U of X, the set f(U) is

open in Y. 

(a) Prove Exercise 16.4. 

(b) Show that if Xα has the topology Tα for each α ∈ I, and ∏α ∈ I Xα has the product topology,

then the projection map πβ : (∏α ∈ I Xα) → Xβ is open.

PS3.2: Let X and Y both be the set Z of integers with the finite complement topology TX=TY on Z.

Let Tprod be the product topology on X × Y, and let Tfc be the finite complement topology on X ×

Y. Determine whether or not Tprod = Tfc. If a double containment fails, determine whether one or

the other of the possible containments holds. (Prove your answer.)
Due 9/19/13 for grading: 16.1, PS3.1(b), 18.4

PS4: PS4.1, 17.3, PS4.2, 18.8 (Y=R with Euclidean topology), 17.8ab, 17.19ab, 17.20cf, 18.2
PS4.1: Let X be the set R of real numbers with the Euclidean topology TX=TEucl, and let Y be the

set R of real numbers with the included point topology TY=Tincluded = {U ⊆ Y | 0 ∈ U} ∪ {∅}.

Let f:X -> Y be defined by f(t)=t-1 for every real number t. Determine whether or not f is

continuous (and prove your answer).

PS4.2: A map f : X → Y is said to be a closed map if for every closed set U of X, the set f(U) is

closed in Y. 

(a) Show that if f:X -> Y is a closed map and f(X) ⊆ B ⊆ Y, then f|B is a closed map. 

(b) Suppose that Xα has the topology Tα for each α ∈ I, and ∏α ∈ I Xα has the product topology.

Show that the projection map πβ : (∏α ∈ I Xα) → Xβ may not be closed. 

(Hint: Use problem E17.20(f).)

Due 9/26/13 for grading: PS4.1, 17.8b, 18.2



PS5: 3.4, 22.1, 22.2, PS5.1, PS5.2, PS5.3, PS 5.4

PS5.1: Show that if f : X → Y and g : Y → Z are both homeomorphisms, then so are the inverse

function f-1 and the composition g ∘ f.

PS5.2: 
(a) Show that a composition of open maps is open. 

(b) Show that a finite product of open maps is open. Is the result true for an infinite product? 

(c) Show that if f:X -> Y is an open map and f(X) ⊆ B ⊆ Y, then f|B is an open map.

PS5.3: In each part a topological space X that is a subspace of Euclidean space is given, together

with an equivalence relation ~ on X. Find a familiar space Y that is homeomorphic to the quotient

space X/~, and prove your answer using Theorem I. 

(a) X = R2, and ~ is defined by [ (x0,y0) ~ (x1,y1) if and only if x0 + y0
2 = x1 + y1

2 ]. Prove your

answer in this part using Theorem Q. 

(b) X = R2, and ~ is defined by [ (x0,y0) ~ (x1,y1) if and only if x0
2 + y0

2 = x1
2 + y1

2 ]. Prove your

answer in this part using the result of E22.2b. 

(Note: You may use the fact that the square root function √    : [0,∞) → [0,∞) (where each space

has the Euclidean subspace topology) is continuous.) 

(c) X = [-1,1] ⊆ R, and ~ is the smallest equivalence relation on X with -p ~ p for all p ∈ X. 

(d) X = R, and ~ is the smallest equivalence relation on X with x ~ x+n for all x in R and all
integers n.

PS5.4: Let X be an octagon in R2. Define an equivalence relation on X corresponding to labeling
the 8 edges in the boundary of X in a counterclockwise fashion in order by: counterclockwise a,
counterclockwise b, clockwise a, clockwise b, counterclockwise c, counterclockwise d, clockwise

c, clockwise d. Let M be the corresponding quotient space. Build a concrete version of M out of
paper or cloth (or any other 2-dimensional flexible material) to show that M is homeomorphic to

the frosting on a doughnut with 2 holes.
Due 10/3/13 for grading: 22.1, PS5.2c, PS5.3b

PS6: 17.11, 17.12, 19.3 

Exam 1 10/8/13

PS7: 20.3a, 21.1, PS7.1, PS7.2, PS7.3, 23.11, 24.3, 24.8
PS7.1: Let X be a metrizable space, and suppose that p ∈ X and C is a closed subset of X that

does not contain p. Show that there are disjoint open sets U and V in X with p ∈ U and C ⊆ V.
PS7.2: Let X denote the ``flea and comb space'': 

X = {(0,1)} ∪ { (x,0) | 0 ≤ x ≤ 1 } ∪ { ((1/n),y) | 0 ≤ y ≤ 1 , n ∈ N }, with the subspace

topology from the Euclidean space R2. 
(a) Show that X - {(0,1)} is path-connected. 

(b) Show that X is connected. 
(c) Show that X is not path connected. (Hint 1: A path γ from (0,1) to any other point must first

leave a neighborhood of (0,1). Show that the IVT says that it can't.) (Hint 2: The least upper bound
property for the reals may be useful.) 

(d) Prove that X has two path components, one of which is not a closed subset of X.
PS7.3: For the following topological spaces, determine whether or not the space is connected or

path connected, and find the connected components and path components. 
(a) The real line with the lower limit topology. 



(b) The real line with the excluded point topology. 

(c) The real line with the included point topology.
Due 10/24/13 for grading: PS7.1, PS7.3a, 24.8a

PS8: 26.3, PS8.1, PS8.2, 26.5, 26.9, 30.4, 30.12 (2nd ctbl only), 31.2, 31.5, 32.1, 32.2

PS8.1: For the following topological spaces:
(1) Determine whether or not the space is compact. (That is, determine whether or not a

race of space-faring snuffalumps measuring the temperatures at all of the points in their space
must find that a maximum and a minimum temperature will be achieved!)

(2) Determine the largest natural number i for which the space has the separation property
Ti.

(a) The real line with the excluded point topology. 

(b) The real line with the included point topology. 
(c) The space Rll consisting of real line with the lower limit topology. 

(d) The subspace [0,1] of Rll.

PS8.2: In each part, a topological space X built from subspaces of Euclidean space is given,

together with an equivalence relation ~ on X. Find a familiar space Y that is homeomorphic to the
quotient space X/~, and prove your answer. 

(a) X = [0,1] × [0,1] ⊆ R2, and ~ is the smallest equivalence relation on X such that (x,0) ~ (x,1)

and (0,y) ~ (1,y) for all x,y ∈ [0,1]. 

(b) X = D1 ∪ D2 is the disjoint union of two closed disks D1 ≅ D2 ≅ D2 = {(x,y) | x2 + y2 ≤ 1} ⊆

R2 (where each disk has the Euclidean subspace topology, and X has the disjoint union topology)

and ~ is the smallest equivalence relation on X such that (x,y) ~ (r,s) for all (x,y) ∈ D1 and (r,s) ∈

D2 satisfying (x,y)=(r,s) and x2 + y2 = 1. 

(c) Challenge: X = D2 and ~ is the smallest equivalence relation on X such that (x,y) ~ (1,0) for all

(x,y) satisfying x2 + y2 = 1.
Due 11/7/13 for grading: 26.5, PS8.1(1)(d), 30.4, 32.2(T4 only)

PS9: PS9.1:Urysohn Metrization Theorem Proof Deconstruction 

Due 11/14/13 for grading: PS9.1

PS10: H p.18 #2, PS10.1, PS10.2, H p.18 #3, PS10.3, H p.18 #9=M58.6, PS10.4, PS10.5
PS10.1: For each function f below, what familiar space is homeomorphic to space constructed

from f? (In each case, prove your answer by pictures!) 

(a) Mapping cylinder for the function f: I → S1 defined by f(t) = ( cos(4 π t), sin(4 π t)). 

(b) Mapping torus for the function f: S1 → S1 defined by f(x,y) = (x,-y).
PS10.2: Let Xf be the mapping cylinder associated to a continuous function f : X -> Y . Let j : Y ->

Xf be the function j(y) := [y] for all y in Y, and let Y ̅be the image j(Y). 

(a) Let i : Y ̅-> Xf be the inclusion map and let r : Xf -> Y ̅be defined by r([(x,s)]) := [f(x)] and

r([y]) := [y] for all x in X, s in I, and y in Y . Show that r is a retraction from Xf to Y,̅ and that the

set of functions {ft : Xf -> Xf}t ∈ I defined by ft([(x,s)]) := [(x,t+(1-t)s)] and ft([y]) := [y], is a

deformation retraction from Xf to Y ̅- that is, a homotopy from the identity map on Xf to the

composite function i ο r, rel Y.̅ (Hint: You may use the results of Munkres Exercise 18.10 p. 112



and of Munkres Exercise 29.11 p. 186: If q:X -> Y is a quotient map and i':Z -> Z is the identity

map for a compact Hausdorff space Z, then q x i': X x Z -> Y x Z is also a quotient map.) 

(b) Show that j is an embedding, and that Xf is homotopy equivalent to Y.

PS10.3: Define the paths f,g : I -> S2 (with the Euclidean subspace topology) by f(s) := (cos(2 π s),

sin(2 π s), 0) and g(s) := (1,0,0) for all s in I. Prove that f is homotopic to g rel {0,1}. (That is,

show that f and g are "path homotopic".)
PS10.4: Show that any contractible space is path-connected.

PS10.5: Let X := {a,b} have the indiscrete topology. Compute the fundamental group π1(X,a).

(Prove your answer.)

Due 11/26/13 for grading: PS10.1(b), H p.18 #9, PS10.5

PS11: H p.38 #1, H p. 38 #3, PS11.1
PS11.1: (a) Show that for any continuous function h: (X,x0) -> (Y,y0), the induced map h*:

π1(X,x0) -> π1(Y,y0) is a well-defined group homomorphism. 

(b) Show that (k ∘ h)* = k* ∘ h* 

(c) Show that (1(X,x0))* = 1π1(X,x0). 

(d) Let f: X -> Y be a continuous map, let x0,x1 ∈ X, and let α be a path in X from x0 to x1. Let

f*,x0
: π1(X,x0) -> π1(Y,f(x0)) and f*,x1

: π1(X,x1) -> π1(Y,f(x1)) be the maps induced by f at x0 and

x1 respectively, and let βα and βf ∘ α be the change of basepoint maps induced by the paths α in X

and f ∘ α in Y, respectively. Prove that βf ∘ α ∘ f*,x0
 = f*,x1

 ∘ βα. (This part is Hatcher's problem p.

39 # 15.)
Exam 2 12/5/13

S. Hermiller.


