
Qualifying Exam in Algebra, Winter 2018

Part I. True or false. Justify your answer by giving a proof or counterexample.
10 points each.

1. The extension Q(
√

2 +
√

2)/Q is normal.

Answer: TRUE. Let α =
√

2 +
√

2; it is a root of polynomial (x2 − 2)2 =

2. Other roots are ±
√

2±
√

2; note that
√

2−
√

2α =
√

2 = α2 − 2, that is√
2−
√

2 = α2−2
α . Thus all the roots of (x2 − 2)2 = 2 are contained in Q(α), so

Q(α)/Q is a splitting field of this polynomial. Hence this is a normal extension.

2. Let Un(C) be the ring of upper triangular n × n matrices with entries in C.
Any irreducible Un(C)−module is one dimensional over C.

Answer: TRUE. We have a homomorphism Un(C) → C ⊕ · · · ⊕ C sending a
matrix to its diagonal. The kernel of this homomorphism consists of strictly upper
triangular matrices, so it is nilpotent and is contained in the Jacobson radical of
Un(C) (in fact its coincides with the Jacobson radical). Since the Jacobson radical
acts by zero on an irreducible module we see that any irreducible Un(C)−module
is a pullback of irreducible C ⊕ · · · ⊕ C−module. It is clear that any irreducible
module over the latter algebra is 1-dimensional (since this algebra is commutative
or by the classification of simple modules over semisimple rings).

3. The abelian group Q/Z is flat.

Answer: FALSE. Consider the map Z → Z given by multiplication by 2. It is
injective. If Q/Z were flat, tensoring by Q/Z would preserve injections, so the map
Q/Z→ Q/Z given by multiplication by 2 would be injective too. But for example
the coset of 1/2 goes to zero so it is not.

4. A C[x, y]−module is semisimple if and only if its restrictions to both of the
subalgebras C[x] and C[y] are semisimple.

Answer: TRUE. Let M be a semisimple C[x, y]−module. Then it is a direct
sum of irreducible C[x, y]−modules which are 1-dimensional over C (since by Null-
stellensatz any maximal ideal of C[x, y] is of codimension 1). Thus the restriction of
M to any C−subalgebra is a direct sum of 1-dimensional modules, hence semisim-
ple.

Conversely assume the restrictions of M to C[x] and C[y] are semisimple. Then
M =

∑
a∈CMa where Ma = {m ∈ M |xm = am} since Ma is a sum of all

C[x]−submodules of M isomorphic to simple module C[x]/(x − a). It is clear
that each Ma is C[y]−submodule of M . Thus Ma decomposes into a sum of irre-
ducible hence 1-dimensional C[y]−modules. Any such summand of Ma is clearly
C[x, y]−submodule of M . Thus M is a sum of 1-dimensional hence irreducible
C[x, y]−modules, hence it is semisimple.

5. The cyclotomic polynomial Φ255(x) reduced modulo 2 is irreducible as an
element of F2[x].
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Answer: FALSE. The polynomial Φ255(x) is a divisor of x255 − 1 (both over
Z and over F2). Thus any root α of Φ255(x) satisfies α255 = 1 whence α256 = α.
Thus α is contained in F256 which is the splitting field of x256 − x over F2. Since
[F256 : F2] = 8, the degree of the minimal polynomial of α over F2 is ≤ 8. Thus
Φ255(x) is not irreducible as its degree φ(255) = 2 · 4 · 16 = 128 > 8.

Part II. Longer problems. 10 points each.

1. Describe all proper subgroups of the symmetric groups Sn of order strictly
more than (n− 1)!.

Solution: Let H ⊂ Sn be a proper subgroup with |H| > (n − 1)!. The group
Sn then acts transitively (hence nontrivially) on the set of cosets Sn/H of size
m = |Sn : H| < n. Thus we have a nontrivial homomorphism Sn → Sm and its
restriction to the alternating group An → Sm. The latter homomorphism must be
trivial for n ≥ 5 since the alternating group is simple and |An| = 1

2n! > m! = |Sm|.
Thus the action factors through Sn/An = Z/2Z and its orbit Sn/H is of size ≤ 2.
Thus H = An since An is a unique subgroup of index 2 in Sn.

It remains to consider the cases when n ≤ 4. The cases n = 1, 2, 3 are trivial
with a unique possibility H = A3 ⊂ S3. In the case n = 4 the index of H must be
2 or 3; if the index is 2 then the subgroup is A4 ⊂ S4. If the index is 3 then |H| = 8
and H is Sylow 2-subgroup of S4. There are precisely 3 such subgroups.

Answer: Such subgroup is either the alternating group An ⊂ Sn for n ≥ 3 or
one of three Sylow 2-subgroups of S4.

2. Let G be a finite group and let H ⊂ G be a subgroup. Let g ∈ G be an
element such that no conjugate of g is contained in H. Prove that for any finite
dimensional H−module V (over an arbitrary field) the trace of g in IndGHV is zero.

Solution: Let g1, . . . , gn be G/H coset representatives. Let v1, . . . , vm be a
basis for V . Then gi ⊗ vj is a basis for the induced module. To compute the trace
of g, act on this basis. Say ggi = gkh for h ∈ H. Then g(gi ⊗ vj) = gk ⊗ hvj . The
diagonal entry of the matrix of g in the basis above is the coefficient of gi ⊗ vj in
the expansion of g(gi ⊗ vj). Thus to give a non-zero contribution to the trace, we
must have that k = i. But then ggi = gih contradicting the hypothesis on g.

3. For a partially ordered set (X,≤), let CX be the corresponding category: the
objects of CX are the elements of X and there is a unique morphism θ : x 7→ y if
and only if x ≤ y. For an order preserving map f : X → Y , let Ff : CX → CY be
the corresponding functor. Viewing Z and R as partially ordered sets via the usual
ordering ≤, the obvious embedding i : Z→ R is an order preserving map. Find the
right and left adjoints of the functor Fi : CZ → CR, justifying your answer carefully.

Solution: Let G : CR → CZ be the left adjoint functor of Fi. Thus we must have
a bijection Hom(Gx,m)↔ Hom(x, Fim) for all x ∈ R,m ∈ Z. Thus

Gx ≤ m⇔ Hom(Gx,m) 6= ∅ ⇔ Hom(x, Fim) 6= ∅ ⇔ x ≤ m⇔ dxe ≤ m,
where d e : R → Z is the ceiling function. Notice that this function is order
preserving. Thus it is natural to expect that G = Fd e. This is indeed the case:
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we have a unique bijection Hom(Fd ex,m) ↔ Hom(x, Fim) since both sets have
the same cardinality which is ≤ 1. This bijection is natural in both variables as
all the Hom−sets in the naturality diagram are of cardinality ≤ 1, so it must be
commutative.

Similarly, the right adjoint functor of Fi is Fb c where b c : R → Z is the floor
function. Here is a cheap way to see this: observe that the map x 7→ −x gives
an equivalence to opposite categories (coming from opposite posets) and note that
bxc = −d−xe.

4. Let I / C[x1, . . . , xn] be an ideal such that
√
I is maximal. Prove that

C[x1, . . . , xn]/I is finite dimensional over C.

Solution: Let
√
I = (x1−c1, . . . , xn−cn) for (c1, . . . , cn) ∈ Cn. The monomials∏n

i=1(xi − ci)
mi with mi ∈ Z≥0 form a basis of C[x1, . . . , xn] (e.g. apply the

automorphism xi 7→ xi − ci to the standard monomial basis of C[x1, . . . , xn]. By

definition of
√
I, for any i = 1, . . . , n there is ni ∈ Z>0 such that (xi − ci)ni ∈ I.

Thus the monomials
∏n
i=1(xi−ci)mi with 0 ≤ mi < ni for all i span C[x1, . . . , xn]/I.

Hence C[x1, . . . , xn]/I is finite dimensional of dimension ≤
∏n
i=1 ni.

5. Let V be a finite dimensional vector space over a field F , and let f : V → V
be a linear transformation. Prove that 2tr(S2f) = tr(f)2 + tr(f2).

Solution: As the extension of the field does not change the traces we can and
will assume that F is algebraically closed. Pick a basis v1, .., vn with respect to
which f is upper triangular with λ1, . . . , λn on the diagonal (e.g. Jordan normal
form basis would work). Then vivj with i ≤ j is a basis for S2V and the matrix
of S2f has λiλj on its diagonal. We deduce that 2tr(S2f) = 2

∑
i≤j λiλj . On the

other hand (tr(f))2 + tr(f2) =
∑
λ2i + 2

∑
i<j λiλj +

∑
λ2i . The result follows.


