Qualifying Exam in Algebra, Winter 2018

Part I. True or false. Justify your answer by giving a proof or counterexample. 10 points each.

1. The extension $\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$ is normal.

Answer: TRUE. Let $\alpha = \sqrt{2 + \sqrt{2}}$; it is a root of polynomial $(x^2 - 2)^2 = 2$. Other roots are $\pm \sqrt{2 \pm \sqrt{2}}$; note that $\sqrt{2 - \sqrt{2}\alpha} = \sqrt{2} = \alpha^2 - 2$, that is $\sqrt{2 - \sqrt{2}} = \frac{\alpha^2 - 2}{\alpha}$. Thus all the roots of $(x^2 - 2)^2 = 2$ are contained in $\mathbb{Q}(\alpha)$, so $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a splitting field of this polynomial. Hence this is a normal extension.

2. Let $U_n(\mathbb{C})$ be the ring of upper triangular $n \times n$ matrices with entries in \mathbb{C} . Any irreducible $U_n(\mathbb{C})$ -module is one dimensional over \mathbb{C} .

Answer: TRUE. We have a homomorphism $U_n(\mathbb{C}) \to \mathbb{C} \oplus \cdots \oplus \mathbb{C}$ sending a matrix to its diagonal. The kernel of this homomorphism consists of strictly upper triangular matrices, so it is nilpotent and is contained in the Jacobson radical of $U_n(\mathbb{C})$ (in fact its coincides with the Jacobson radical). Since the Jacobson radical acts by zero on an irreducible module we see that any irreducible $U_n(\mathbb{C})$ -module is a pullback of irreducible $\mathbb{C} \oplus \cdots \oplus \mathbb{C}$ -module. It is clear that any irreducible module over the latter algebra is 1-dimensional (since this algebra is commutative or by the classification of simple modules over semisimple rings).

3. The abelian group \mathbb{Q}/\mathbb{Z} is flat.

Answer: FALSE. Consider the map $\mathbb{Z} \to \mathbb{Z}$ given by multiplication by 2. It is injective. If \mathbb{Q}/\mathbb{Z} were flat, tensoring by \mathbb{Q}/\mathbb{Z} would preserve injections, so the map $\mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ given by multiplication by 2 would be injective too. But for example the coset of 1/2 goes to zero so it is not.

4. A $\mathbb{C}[x, y]$ -module is semisimple if and only if its restrictions to both of the subalgebras $\mathbb{C}[x]$ and $\mathbb{C}[y]$ are semisimple.

Answer: TRUE. Let M be a semisimple $\mathbb{C}[x, y]$ -module. Then it is a direct sum of irreducible $\mathbb{C}[x, y]$ -modules which are 1-dimensional over \mathbb{C} (since by Null-stellensatz any maximal ideal of $\mathbb{C}[x, y]$ is of codimension 1). Thus the restriction of M to any \mathbb{C} -subalgebra is a direct sum of 1-dimensional modules, hence semisimple.

Conversely assume the restrictions of M to $\mathbb{C}[x]$ and $\mathbb{C}[y]$ are semisimple. Then $M = \sum_{a \in \mathbb{C}} M_a$ where $M_a = \{m \in M | xm = am\}$ since M_a is a sum of all $\mathbb{C}[x]$ -submodules of M isomorphic to simple module $\mathbb{C}[x]/(x-a)$. It is clear that each M_a is $\mathbb{C}[y]$ -submodule of M. Thus M_a decomposes into a sum of irreducible hence 1-dimensional $\mathbb{C}[y]$ -modules. Any such summand of M_a is clearly $\mathbb{C}[x, y]$ -submodule of M. Thus M is a sum of 1-dimensional hence irreducible $\mathbb{C}[x, y]$ -modules, hence it is semisimple.

5. The cyclotomic polynomial $\Phi_{255}(x)$ reduced modulo 2 is irreducible as an element of $\mathbb{F}_2[x]$.

Answer: FALSE. The polynomial $\Phi_{255}(x)$ is a divisor of $x^{255} - 1$ (both over \mathbb{Z} and over \mathbb{F}_2). Thus any root α of $\Phi_{255}(x)$ satisfies $\alpha^{255} = 1$ whence $\alpha^{256} = \alpha$. Thus α is contained in \mathbb{F}_{256} which is the splitting field of $x^{256} - x$ over \mathbb{F}_2 . Since $[\mathbb{F}_{256} : \mathbb{F}_2] = 8$, the degree of the minimal polynomial of α over \mathbb{F}_2 is ≤ 8 . Thus $\Phi_{255}(x)$ is not irreducible as its degree $\phi(255) = 2 \cdot 4 \cdot 16 = 128 > 8$.

Part II. Longer problems. 10 points each.

1. Describe all proper subgroups of the symmetric groups S_n of order strictly more than (n-1)!.

Solution: Let $H \subset S_n$ be a proper subgroup with |H| > (n-1)!. The group S_n then acts transitively (hence nontrivially) on the set of cosets S_n/H of size $m = |S_n : H| < n$. Thus we have a nontrivial homomorphism $S_n \to S_m$ and its restriction to the alternating group $A_n \to S_m$. The latter homomorphism must be trivial for $n \ge 5$ since the alternating group is simple and $|A_n| = \frac{1}{2}n! > m! = |S_m|$. Thus the action factors through $S_n/A_n = \mathbb{Z}/2\mathbb{Z}$ and its orbit S_n/H is of size ≤ 2 . Thus $H = A_n$ since A_n is a unique subgroup of index 2 in S_n .

It remains to consider the cases when $n \leq 4$. The cases n = 1, 2, 3 are trivial with a unique possibility $H = A_3 \subset S_3$. In the case n = 4 the index of H must be 2 or 3; if the index is 2 then the subgroup is $A_4 \subset S_4$. If the index is 3 then |H| = 8 and H is Sylow 2-subgroup of S_4 . There are precisely 3 such subgroups.

Answer: Such subgroup is either the alternating group $A_n \subset S_n$ for $n \geq 3$ or one of three Sylow 2-subgroups of S_4 .

2. Let G be a finite group and let $H \subset G$ be a subgroup. Let $g \in G$ be an element such that no conjugate of g is contained in H. Prove that for any finite dimensional H-module V (over an arbitrary field) the trace of g in $\operatorname{Ind}_{H}^{G} V$ is zero.

Solution: Let g_1, \ldots, g_n be G/H coset representatives. Let v_1, \ldots, v_m be a basis for V. Then $g_i \otimes v_j$ is a basis for the induced module. To compute the trace of g, act on this basis. Say $gg_i = g_k h$ for $h \in H$. Then $g(g_i \otimes v_j) = g_k \otimes hv_j$. The diagonal entry of the matrix of g in the basis above is the coefficient of $g_i \otimes v_j$ in the expansion of $g(g_i \otimes v_j)$. Thus to give a non-zero contribution to the trace, we must have that k = i. But then $gg_i = g_i h$ contradicting the hypothesis on g.

3. For a partially ordered set (X, \leq) , let \mathcal{C}_X be the corresponding category: the objects of \mathcal{C}_X are the elements of X and there is a unique morphism $\theta : x \mapsto y$ if and only if $x \leq y$. For an order preserving map $f : X \to Y$, let $F_f : \mathcal{C}_X \to \mathcal{C}_Y$ be the corresponding functor. Viewing \mathbb{Z} and \mathbb{R} as partially ordered sets via the usual ordering \leq , the obvious embedding $i : \mathbb{Z} \to \mathbb{R}$ is an order preserving map. Find the right and left adjoints of the functor $F_i : \mathcal{C}_{\mathbb{Z}} \to \mathcal{C}_{\mathbb{R}}$, justifying your answer carefully.

Solution: Let $G : \mathcal{C}_{\mathbb{R}} \to \mathcal{C}_{\mathbb{Z}}$ be the left adjoint functor of F_i . Thus we must have a bijection $\operatorname{Hom}(Gx, m) \leftrightarrow \operatorname{Hom}(x, F_im)$ for all $x \in \mathbb{R}, m \in \mathbb{Z}$. Thus

 $Gx \le m \Leftrightarrow \operatorname{Hom}(Gx, m) \ne \emptyset \Leftrightarrow \operatorname{Hom}(x, F_i m) \ne \emptyset \Leftrightarrow x \le m \Leftrightarrow \lceil x \rceil \le m,$

where $[]: \mathbb{R} \to \mathbb{Z}$ is the ceiling function. Notice that this function is order preserving. Thus it is natural to expect that $G = F_{[]}$. This is indeed the case:

we have a unique bijection $\operatorname{Hom}(F_{\lceil \rceil}x,m) \leftrightarrow \operatorname{Hom}(x,F_im)$ since both sets have the same cardinality which is ≤ 1 . This bijection is natural in both variables as all the Hom-sets in the naturality diagram are of cardinality ≤ 1 , so it must be commutative.

Similarly, the right adjoint functor of F_i is $F_{\lfloor \rfloor}$ where $\lfloor \rfloor : \mathbb{R} \to \mathbb{Z}$ is the floor function. Here is a cheap way to see this: observe that the map $x \mapsto -x$ gives an equivalence to opposite categories (coming from opposite posets) and note that $\lfloor x \rfloor = -\lceil -x \rceil$.

4. Let $I \triangleleft \mathbb{C}[x_1, \ldots, x_n]$ be an ideal such that \sqrt{I} is maximal. Prove that $\mathbb{C}[x_1, \ldots, x_n]/I$ is finite dimensional over \mathbb{C} .

Solution: Let $\sqrt{I} = (x_1 - c_1, \ldots, x_n - c_n)$ for $(c_1, \ldots, c_n) \in \mathbb{C}^n$. The monomials $\prod_{i=1}^n (x_i - c_i)^{m_i}$ with $m_i \in \mathbb{Z}_{\geq 0}$ form a basis of $\mathbb{C}[x_1, \ldots, x_n]$ (e.g. apply the automorphism $x_i \mapsto x_i - c_i$ to the standard monomial basis of $\mathbb{C}[x_1, \ldots, x_n]$. By definition of \sqrt{I} , for any $i = 1, \ldots, n$ there is $n_i \in \mathbb{Z}_{>0}$ such that $(x_i - c_i)^{n_i} \in I$. Thus the monomials $\prod_{i=1}^n (x_i - c_i)^{m_i}$ with $0 \le m_i < n_i$ for all i span $\mathbb{C}[x_1, \ldots, x_n]/I$. Hence $\mathbb{C}[x_1, \ldots, x_n]/I$ is finite dimensional of dimension $\le \prod_{i=1}^n n_i$.

5. Let V be a finite dimensional vector space over a field F, and let $f: V \to V$ be a linear transformation. Prove that $2\operatorname{tr}(S^2 f) = \operatorname{tr}(f)^2 + \operatorname{tr}(f^2)$.

Solution: As the extension of the field does not change the traces we can and will assume that F is algebraically closed. Pick a basis $v_1, ..., v_n$ with respect to which f is upper triangular with $\lambda_1, ..., \lambda_n$ on the diagonal (e.g. Jordan normal form basis would work). Then $v_i v_j$ with $i \leq j$ is a basis for $S^2 V$ and the matrix of $S^2 f$ has $\lambda_i \lambda_j$ on its diagonal. We deduce that $2 \operatorname{tr}(S^2 f) = 2 \sum_{i \leq j} \lambda_i \lambda_j$. On the other hand $(\operatorname{tr}(f))^2 + \operatorname{tr}(f^2) = \sum \lambda_i^2 + 2 \sum_{i < j} \lambda_i \lambda_j + \sum \lambda_i^2$. The result follows.