Solutions to the Spring 2003 prelim

1A. Let k£ be a field, and let n > 1. Prove that the following properties of an n x n matrix
A with entries in k are equivalent:

(a) A is a scalar multiple of the identity matrix.

(b) Every nonzero vector v € k™ is an eigenvector of A.

Solution: Obviously (a) implies (b). If (b) holds, then in particular, the standard basis
vectors e; are eigenvectors of A, so A is diagonal, say with entries A;; = A;. If \; # A;, then
A(e; + e;) = \ie; + A\je; is not a scalar multiple of e; + e;. This contradicts the hypothesis
that e; + e; is an eigenvector of A. Hence the diagonal entries \; are all equal and we have

(a).

2A. Define f : R? — R by f(z,0) = 0 and

2

f(z,y) = (1—COS%> Va2 +y?

for y # 0.
(a) Show that f is continuous at (0, 0).

(b) Calculate all the directional derivatives of f at (0,0).
(c) Show that f is not differentiable at (0,0).

Solution:
(a) We have |f(z,y)|] < 24/2? + 3?2, and the latter tends to 0 as (z,y) — (0,0).
(b) In the direction of (z,y) with y # 0, the directional derivative is

. f(t$7ty) 1 t2$2 2 2
}gr(l)T _1128 l—cosg vVt +y? =0,
and the limit is trivially zero in the direction of (z,0) for any z.

(c) If f were differentiable, the derivative would be zero, and then f(z,y)/v/2?>+y*> — 0
as (z,y) — (0,0). This is false, since if we approach (0,0) along the curve z?/y = 7, the

limit of f(z,y)/v/2?+y?is 1 —cosm = 2.

3A. Let M5(Q) denote the ring of 2 x 2 matrices with entries in Q. Let R be the set of
11

0 1)

(a) Prove that R is a subring of M5(Q).

(b) Prove that R is isomorphic to the ring Q[x]/(z?).

matrices in Ms(Q) that commute with

Solution:
(a) Let N = ((1) D If A, B € R, then (A+ B)N = AN+ BN = NATNB = N(A+B), so0

A+ BeR. If A B € R, then (AB)N = A(BN) = A(NB) = (AN)B = (NA)B = N(AB),
so AB € R. If I is the identity matrix, then clearly —I € R. These three facts imply that

R is a subring.
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(b) Calculating shows that the matrix A = (Z Z) belongs to R if and only if a = a + ¢,
a+b=0b+4d, and ¢+ d = d, that is, if and only if A has the form (8 Z) We define
a Q-algebra homomorphism h : Q[z] — R by mapping = to <8 (1)> Clearly h(z?) =

2
(8 é) = 0, so h induces a homomorphism Q[z]/(x?) — R. Since h(a + bx) = (g 2),

this homomorphism Q[x]/(2%) — R is an isomorphism.

4A. Prove that for each integer n > 0 there is a polynomial 7},(x) with integer coefficients
such that the identity
2cosnz = T,(2cos z)

holds for all z.

Solution: Put ¢ = €%, so 2cosz = g+ ¢ ', and 2cosnz = ¢" + ¢~™. Then the problem is

to find T, such that T,,(¢ + ¢~') = ¢" + ¢~ ™. We have

n

(a+a7 )" =) (Z) =" ((n _nj)/z) (qj+q_j)+{(§n72) if  is even,

Pt 0<ien otherwise.

n — j even

We can assume we have found 7} for j < n by induction. Then

on n . B (an) if n is even,
T(w) =a"= > (<n_j>/2)<ﬂ<x>> {0/

o otherwise

n — j even

has the required property.

5A. Let L be a real symmetric n X n matrix with 0 as a simple eigenvalue, and let v € R™.
(a) Show that for sufficiently small positive real €, the equation Lz + ex = v has a unique
solution x = x(e) € R™.
(b) Evaluate lim, o+ ex(€) in terms of v, the eigenvectors of L, and the inner product (, )
on R™.

Solution: Since L is real and symmetric, R™ has an orthonormal basis of eigenvectors
e1,...,e, of L. Let A1,..., A\, be the associated eigenvalues. Without loss of generality,
A =0and \; # 0 for s > 1. Write v = >." , ve; and @ = > xye; with v, 2; € R. The
equation Lx+exr = v is equivalent to \;x; + ex; = v; for each i, which has the unique solution
x; = v;/(\; + €), provided that 0 < € < min;» |A;|. Now

€
€T — E €Exr;e; = E —U;€;.
)\z' +¢€

As € — 0, all terms in the sum on the right tend to 0 except the first, which tends to
vier = (v, eq)e.

6A. Let z, be a sequence of real numbers so that lim, (22,11 — x,) = x. Show that
lim,, o z, = .
2



Solution: First show that {z,} is bounded. We know that the sequence {2z, — z,} is
bounded. Then we can choose M large so that |z;| < M and |2z, — x,| < M for all n.
We prove by induction that |z,| < M for all n. Indeed, suppose that |z,| < M. Then

T+ (20541 — T, 1
] = [T G 2Ty L o ey < M
2 2

This concludes the induction and shows that {x,} is bounded.
Now write again
Tn + (2Tp11 — Ty)
2

Tnt1 =
and take lim sup. We get
limsup z,, + x
2
which gives limsup z,, < . Similarly we get liminf z,, > x. Together these two inequalities
imply that limx, = x.

lim sup z,, <

7A. (a) Suppose that H; and Hy are subgroups of a group G such that H; U Hs is a subgroup
of G. Prove that either H; C Hy or Hy C H;.

(b) Show that for each integer n > 3, there exists a group G with subgroups H;, Ho, ...,
H,,, such that no H; is contained in any other, and such that H; U HyU---U H,, is a subgroup
of G.

Solution:

(a) If not, there exists hy € Hy — Hy and hy € Hy — Hy. Since hy and hy belong to the
subgroup H; U Hs, we also have h1hy € H; U Hy. If hihy € Hy, we get the contradiction
hy = hi*(hihy) € Hy. If hihy € Hy, we get the contradiction hy = (hihy)hy' € Hy.

(b) Let G = (Z/2Z)" ' For 1 <i<n-—1,1let H;={(z1,...,2,1) € G:2;=0}. Then
HyU---UH, 1=G—-{(1,1,...,1)}. Let H, ={(z1,...,2,-1) € G : 21+ 29 =0}. Then
(1,1,...,1) € H,,s0o HiU---UH, = G. No H; is contained in any other, since they are
distinct subgroups of the same order.

8A. Evaluate fooo e~ cos 22 dx.

Solution: It is the real part of
I /oo 67(1+i)x2 do — /OO 67\/567”/4x2 do — /OO efx/i(em/sx)Q do.
0 0 0

Let C denote the wedge-shaped closed contour consisting of the straight path from 0 to
R > 0, the arc v given by e R as t goes from 0 to m/8, and the straight path from e™/8R
to 0. By Cauchy’s Theorem, fc V2" 1z = 0. But f7 e V2 4z — 0 as R — oo, since the

—\/2eim/AR2

integrand is bounded in absolute value by |e | = e’ along ~, while the length of

vis O(R). Thus [, e~V?**dz = 0 implies
0= /oo e V2 1y /OO e~ VAT ) d(e"™8z)
0 0
or equivalently,

__o—1/4 = —u? _ im/8
0=2 e du—e™°I,
0
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so [ = 2_1/46_”/8‘/7%. Thus the answer, which is the real part of I, is

2754 (cos /8) /7.

9A. Let R be the set of complex numbers of the form
a+3bi, a,beZ.

Prove that R is a subring of C, and that R is an integral domain but not a unique factorization
domain.

Solution: It’s routine to verify that R is an additive subgroup and is closed under multi-
plication. Since C is a field, any subring is an integral domain. Consider two factorizations
of the integer 10 in R, namely 10 = 2-5 and 10 = (1+ 37)(1 — 3i). The norm |z|? = a® + 9b?
of any z € R is an integer, and if |z]?> < 9 then b = 0, so z is a real integer. This implies
in particular that 2 has no non-trivial factorization in R. If R were a UFD, then 2 would
divide 1 4 37 or 1 — 3i. But that can’t be, since (1 &+ 3i)/2 are not in R.

1B. (a) Prove that there is no continuously differentiable, measure-preserving bijective func-
tion f: R — Ryy.

(b) Find an example of a continuously differentiable, measure-preserving bijective function
fiRXxR—R xRy

Solution: For either (a) or (b), the measure-preserving condition is that the Jacobian
determinant J(f) has absolute value 1 everywhere. By continuity, we must have J(f) = 1
or J(f) = —1 identically. In (a), this would mean f'(z) =1 or f'(x) = —1,s0 f(z) =c+ =z
or f(z) =c—x. Thus f cannot map R into R.o. One possible example for (b) is f(z,y) =
(e Yx,eY).

2B. For an analytic function h on C, let h(¥ denote its i-th derivative. (If i = 0, then
h() = h.) Suppose that f and g are analytic functions on C satisfying

™ a1 fY 4y f@ =0
9" + boag"™ ™+ bog =0

for some constants ag, ..., a,-1,b,...,b,n_1 € C. Show that the product function F' = fg
satisfies
CmnF(mn) + Cmnle(mnil) et COF =0

for some constants ¢y, ..., ¢, € C not all zero.

Solution: By induction on k, the function F*) is a linear combination of the mn functions
f@gU) for 0 <i <n, 0 < j < m, with constant coefficients. Therefore the mn + 1 functions
FO . F™) are linearly dependent over C.

3B. Let f be an entire function such that Re f(z) > —2 for all z € C. Show that f is
constant.

Solution: The function g(z) = e /) is entire, and |g(z)| = e R/} < €2 Liouville’s
Theorem implies that g is constant, say g(z) = ¢. Clearly ¢ # 0. Then f maps the connected

set C into the discrete set of all logarithms of ¢, so f is constant.
4



4B. Suppose G is a nonabelian simple group, and A is its automorphism group. Show that
A contains a normal subgroup isomorphic to G.

Solution: For g in G, let ¢, : G — G be the inner automorphism c¢,(h) = ghg™'. Then
it is easy to check that g — ¢, defines a homomorphism G — A. It is nontrivial since G
is nonabelian, and thus an injection since G is simple. Let B be the image, so B ~ G. If
a € Aand g,h € G, then

alcy(h)) = alghg™) = alg)a(h)alg) ™ = cagg(a(h)),

1

SO oy = cqg) 0 in A. Thus aocyoa™ = cq(g), S0 B is normal in G.

5B. Let €' and D be nonempty closed subsets of R", and assume that C' is bounded. Prove
that there exist points z¢ € C and yo € D such that d(zg,yo) < d(z,y) for all z € C, y € D.
Here d(z,y) denotes the Euclidean metric on R™.

Solution: It follows from the triangle inequality that d(z,y) is uniformly continuous as
a real-valued function on C' x D. If C' and D were both bounded, then C' x D would be
compact and d(z,y) would attain its minimum. In the general case, let dy be the infimum
of d(z,y) on C' x D. Let Bpg, be a closed ball of radius Ry around the origin containing C,
and set Ry = Ry + do + €, for some arbitrary € > 0. Then for y ¢ Bg,, we clearly have
d(z,y) > do + € for all z € C. It follows that D N Bg, is non-empty, and the infimum of
d(z,y) on C x (DN Bg,) is equal to dy. Since C' x (D N Bpg,) is compact, the minimum is
attained for some (zg,y9) € C' x (D N Bg,).

6B. Let GLy(C) denote the group of invertible 2 x 2 matrices with coefficients in the field
of complex numbers. Let PGLy(C) denote the quotient of GLy(C) by the normal subgroup
{(3 ?\) A€ C*}. Let n be a positive integer, and suppose that a,b are elements of
PGL,(C) of order exactly n. Prove that there exists ¢ € PGLy(C) such that cac™! is a power
of b.

Solution: Choose A € GLy(C) representing a. Then A" = Al for some A € C*. By
dividing A by an n-th root of A\, we may assume without loss of generality that A" = I.
Since the polynomial ™ — 1 has distinct roots, A is diagonalizable, and the eigenvalues must
be n-th roots of unity. Without loss of generality, we may conjugate, and divide A by the
10
0 ¢
then comparing upper left hand corners shows that s = 1. Since the order of a is exactly n,
the previous sentence implies that A has order exactly n, so that ( is a primitive n-th root
of unity:.

first root of unity, to assume that A = . If for some m > 1, A™ = sl for some s € C*,

Similarly, b is represented by a matrix that is conjugate to B = (O g,) for some primitive

n-th root of unity (/. Then (’ is a power of (, so B is a power of A, and b is conjugate to a

power of a.
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7B. Let f(z) be a function that is analytic in the unit disk D = {|z| < 1}. Suppose that
|f(2)] <1in D. Prove that if f(z) has at least two fixed points z; and 2z, (that is, f(z;) = z;
for j = 1,2), then f(z) = z for all z € D.

Solution: Let S be a linear fractional transformation which maps D onto itself so that
S(0) = x;. Then g = S~ o f oS has the same properties as f and its two fixed points are
0=5"1(2) and y = S !(z2).

Since g(0) = 0 we can define the analytic function h(z) = ¢g(z)/2z. On the circle |z] =1—¢
for fixed € € (0,1), we have |h(2)| = |g(2)|/]z] < 1/(1—¢€), so the maximum principle implies
|h(2)] <1/(1 —¢) for |z] <1 —e. This holds for arbitrarily small € > 0, so |h(z)| <1 for all
ze€D.

On the other hand we know that h(y) = 1, so h assumes a maximum inside D. By the
maximum principle h must be constant; that is, A = 1. This implies that g(z) = z and then

f(z) ==z

8B. Let N = 30030, which is the product of the first six primes. How many nonnegative
integers x less than N have the property that N divides 2® — 17

Solution: We want the number of solutions to 3 = 1 in the ring Z/NZ. By the Chinese
Remainder Theorem, Z/NZ is isomorphic as aring to [ |5 3 5 71113y Z/PZ. Thus the answer
is Hpe{2’3,577,11,13} np, where n, is the number of solutions to #* — 1 in Z/pZ. Now n, is the
number of elements of order dividing 3 in the multiplicative group (Z/pZ)*. Since (Z/pZ)*
is cyclic of order p — 1, we have n, = 3 if 3 divides p — 1, and n, = 1 otherwise. Thus the
answer is

NoN3NsN7N11M13 = 1-1-1-3-1-3=09.

9B. Let A C R be uncountable.

(a) Show that A has at least one accumulation point.

(b) Show that A has uncountably many accumulation points.
(Recall that a point is said to be an accumulation point of A if and only if it is the limit of
a sequence of distinct terms from A.)

Solution:

(a) Forn € Z let A, = AN[n,n+1). Then A = U,ezA,. Since A is uncountable, at
least one of the sets A, needs to be uncountable. Then we can find a sequence in A, with
distinct terms. This sequence is bounded, so it has a convergent subsequence. The limit of
the subsequence is an accumulation point for A.

(b) Denote by B the set of accumulation points. Assume by contradiction that B is at
most countable. The set B is closed, so its complement R\ B is open. Then we can represent
it as a countable union of closed sets, R\ B = UC,,. If B is at most countable then A must
have uncountably many elements in R \ B, therefore in one of the sets C,. By part (a),
AN C, has at least one accumulation point. C, is closed, so this accumulation point is in
C,. This contradicts the fact that all accumulation points of A are in B which does not
intersect C,,.



