Solutions to the Spring 2003 prelim

1A. Let k be a field, and let $n \ge 1$. Prove that the following properties of an $n \times n$ matrix A with entries in k are equivalent:

- (a) A is a scalar multiple of the identity matrix.
- (b) Every nonzero vector $v \in k^n$ is an eigenvector of A.

Solution: Obviously (a) implies (b). If (b) holds, then in particular, the standard basis vectors e_j are eigenvectors of A, so A is diagonal, say with entries $A_{ii} = \lambda_i$. If $\lambda_i \neq \lambda_j$, then $A(e_i + e_j) = \lambda_i e_i + \lambda_j e_j$ is not a scalar multiple of $e_i + e_j$. This contradicts the hypothesis that $e_i + e_j$ is an eigenvector of A. Hence the diagonal entries λ_i are all equal and we have (a).

2A. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by f(x, 0) = 0 and

$$f(x,y) = \left(1 - \cos\frac{x^2}{y}\right)\sqrt{x^2 + y^2}$$

for $y \neq 0$.

- (a) Show that f is continuous at (0, 0).
- (b) Calculate all the directional derivatives of f at (0,0).
- (c) Show that f is not differentiable at (0,0).

Solution:

- (a) We have $|f(x,y)| \leq 2\sqrt{x^2 + y^2}$, and the latter tends to 0 as $(x,y) \to (0,0)$.
- (b) In the direction of (x, y) with $y \neq 0$, the directional derivative is

$$\lim_{t \to 0} \frac{f(tx, ty)}{t} = \lim_{t \to 0} \left(1 - \cos \frac{t^2 x^2}{ty} \right) \sqrt{x^2 + y^2} = 0,$$

and the limit is trivially zero in the direction of (x, 0) for any x.

(c) If f were differentiable, the derivative would be zero, and then $f(x,y)/\sqrt{x^2+y^2} \to 0$ as $(x,y) \to (0,0)$. This is false, since if we approach (0,0) along the curve $x^2/y = \pi$, the limit of $f(x,y)/\sqrt{x^2+y^2}$ is $1 - \cos \pi = 2$.

3A. Let $M_2(\mathbb{Q})$ denote the ring of 2×2 matrices with entries in \mathbb{Q} . Let R be the set of matrices in $M_2(\mathbb{Q})$ that commute with $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- (a) Prove that R is a subring of $M_2(\mathbb{Q})$.
- (b) Prove that R is isomorphic to the ring $\mathbb{Q}[x]/(x^2)$.

Solution:

(a) Let $N = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. If $A, B \in R$, then (A+B)N = AN+BN = NA+NB = N(A+B), so $A + B \in R$. If $A, B \in R$, then (AB)N = A(BN) = A(NB) = (AN)B = (NA)B = N(AB), so $AB \in R$. If I is the identity matrix, then clearly $-I \in R$. These three facts imply that R is a subring.

(b) Calculating shows that the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ belongs to R if and only if a = a + c, a + b = b + d, and c + d = d, that is, if and only if A has the form $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. We define a Q-algebra homomorphism $h : \mathbb{Q}[x] \to R$ by mapping x to $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Clearly $h(x^2) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = 0$, so h induces a homomorphism $\mathbb{Q}[x]/(x^2) \to R$. Since $h(a + bx) = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, this homomorphism $\mathbb{Q}[x]/(x^2) \to R$ is an isomorphism.

4A. Prove that for each integer $n \ge 0$ there is a polynomial $T_n(x)$ with integer coefficients such that the identity

$$2\cos nz = T_n(2\cos z)$$

holds for all z.

Solution: Put $q = e^{iz}$, so $2 \cos z = q + q^{-1}$, and $2 \cos nz = q^n + q^{-n}$. Then the problem is to find T_n such that $T_n(q + q^{-1}) = q^n + q^{-n}$. We have

$$(q+q^{-1})^n = \sum_{k=0}^n \binom{n}{k} q^{2k-n} = q^n + q^{-n} + \sum_{\substack{0 < j < n \\ n-j \text{ even}}} \binom{n}{(n-j)/2} (q^j + q^{-j}) + \begin{cases} \binom{n}{n/2} & \text{if } n \text{ is even}, \\ 0 & \text{otherwise.} \end{cases}$$

We can assume we have found T_j for j < n by induction. Then

$$T_n(x) = x^n - \sum_{\substack{0 < j < n \\ n-j \text{ even}}} \binom{n}{(n-j)/2} (T_j(x)) - \begin{cases} \binom{n}{n/2} & \text{if } n \text{ is even,} \\ 0 & \text{otherwise} \end{cases}$$

has the required property.

5A. Let L be a real symmetric $n \times n$ matrix with 0 as a simple eigenvalue, and let $v \in \mathbb{R}^n$.

(a) Show that for sufficiently small positive real ϵ , the equation $Lx + \epsilon x = v$ has a unique solution $x = x(\epsilon) \in \mathbb{R}^n$.

(b) Evaluate $\lim_{\epsilon \to 0^+} \epsilon x(\epsilon)$ in terms of v, the eigenvectors of L, and the inner product (,) on \mathbb{R}^n .

Solution: Since L is real and symmetric, \mathbb{R}^n has an orthonormal basis of eigenvectors e_1, \ldots, e_n of L. Let $\lambda_1, \ldots, \lambda_n$ be the associated eigenvalues. Without loss of generality, $\lambda_1 = 0$ and $\lambda_i \neq 0$ for i > 1. Write $v = \sum_{i=1}^n v_i e_i$ and $x = \sum x_i e_i$ with $v_i, x_i \in \mathbb{R}$. The equation $Lx + \epsilon x = v$ is equivalent to $\lambda_i x_i + \epsilon x_i = v_i$ for each i, which has the unique solution $x_i = v_i/(\lambda_i + \epsilon)$, provided that $0 < \epsilon < \min_{i \neq 1} |\lambda_i|$. Now

$$\epsilon x = \sum \epsilon x_i e_i = \sum \frac{\epsilon}{\lambda_i + \epsilon} v_i e_i.$$

As $\epsilon \to 0$, all terms in the sum on the right tend to 0 except the first, which tends to $v_1e_1 = (v, e_1)e_1$.

6A. Let x_n be a sequence of real numbers so that $\lim_{n\to\infty} (2x_{n+1} - x_n) = x$. Show that $\lim_{n\to\infty} x_n = x$.

Solution: First show that $\{x_n\}$ is bounded. We know that the sequence $\{2x_{n+1} - x_n\}$ is bounded. Then we can choose M large so that $|x_1| \leq M$ and $|2x_{n+1} - x_n| \leq M$ for all n. We prove by induction that $|x_n| \leq M$ for all n. Indeed, suppose that $|x_n| \leq M$. Then

$$|x_{n+1}| = \left|\frac{x_n + (2x_{n+1} - x_n)}{2}\right| \le \frac{1}{2}(|x_n| + |2x_{n+1} - x_n|) \le M$$

This concludes the induction and shows that $\{x_n\}$ is bounded.

Now write again

$$x_{n+1} = \frac{x_n + (2x_{n+1} - x_n)}{2}$$

and take lim sup. We get

$$\limsup x_n \le \frac{\limsup x_n + x}{2}$$

which gives $\limsup x_n \leq x$. Similarly we get $\liminf x_n \geq x$. Together these two inequalities imply that $\lim x_n = x$.

7A. (a) Suppose that H_1 and H_2 are subgroups of a group G such that $H_1 \cup H_2$ is a subgroup of G. Prove that either $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.

(b) Show that for each integer $n \geq 3$, there exists a group G with subgroups H_1, H_2, \ldots, H_n , such that no H_i is contained in any other, and such that $H_1 \cup H_2 \cup \cdots \cup H_n$ is a subgroup of G.

Solution:

(a) If not, there exists $h_1 \in H_1 - H_2$ and $h_2 \in H_2 - H_1$. Since h_1 and h_2 belong to the subgroup $H_1 \cup H_2$, we also have $h_1h_2 \in H_1 \cup H_2$. If $h_1h_2 \in H_1$, we get the contradiction $h_2 = h_1^{-1}(h_1h_2) \in H_1$. If $h_1h_2 \in H_2$, we get the contradiction $h_1 = (h_1h_2)h_2^{-1} \in H_2$.

(b) Let $G = (\mathbb{Z}/2\mathbb{Z})^{n-1}$. For $1 \leq i \leq n-1$, let $H_i = \{(x_1, \ldots, x_{n-1}) \in G : x_i = 0\}$. Then $H_1 \cup \cdots \cup H_{n-1} = G - \{(1, 1, \ldots, 1)\}$. Let $H_n = \{(x_1, \ldots, x_{n-1}) \in G : x_1 + x_2 = 0\}$. Then $(1, 1, \ldots, 1) \in H_n$, so $H_1 \cup \cdots \cup H_n = G$. No H_i is contained in any other, since they are distinct subgroups of the same order.

8A. Evaluate $\int_0^\infty e^{-x^2} \cos x^2 dx$.

Solution: It is the real part of

$$I := \int_0^\infty e^{-(1+i)x^2} \, dx = \int_0^\infty e^{-\sqrt{2}e^{i\pi/4}x^2} \, dx = \int_0^\infty e^{-\sqrt{2}(e^{i\pi/8}x)^2} \, dx$$

Let *C* denote the wedge-shaped closed contour consisting of the straight path from 0 to R > 0, the arc γ given by $e^{it}R$ as *t* goes from 0 to $\pi/8$, and the straight path from $e^{i\pi/8}R$ to 0. By Cauchy's Theorem, $\int_C e^{-\sqrt{2}z^2} dz = 0$. But $\int_{\gamma} e^{-\sqrt{2}z^2} dz \to 0$ as $R \to \infty$, since the integrand is bounded in absolute value by $|e^{-\sqrt{2}e^{i\pi/4}R^2}| = e^{-R^2}$ along γ , while the length of γ is O(R). Thus $\int_C e^{-\sqrt{2}z^2} dz = 0$ implies

$$0 = \int_0^\infty e^{-\sqrt{2}z^2} dz - \int_0^\infty e^{-\sqrt{2}(e^{i\pi/8}x)^2} d(e^{i\pi/8}x)$$

or equivalently,

$$0 = 2^{-1/4} \int_0^\infty e^{-u^2} du - e^{i\pi/8} I$$

so $I = 2^{-1/4} e^{-i\pi/8} \frac{\sqrt{\pi}}{2}$. Thus the answer, which is the real part of I, is

$$2^{-5/4}(\cos \pi/8)\sqrt{\pi}.$$

9A. Let R be the set of complex numbers of the form

$$a + 3bi, \quad a, b \in \mathbb{Z}.$$

Prove that R is a subring of \mathbb{C} , and that R is an integral domain but not a unique factorization domain.

Solution: It's routine to verify that R is an additive subgroup and is closed under multiplication. Since \mathbb{C} is a field, any subring is an integral domain. Consider two factorizations of the integer 10 in R, namely $10 = 2 \cdot 5$ and 10 = (1+3i)(1-3i). The norm $|z|^2 = a^2 + 9b^2$ of any $z \in R$ is an integer, and if $|z|^2 < 9$ then b = 0, so z is a real integer. This implies in particular that 2 has no non-trivial factorization in R. If R were a UFD, then 2 would divide 1 + 3i or 1 - 3i. But that can't be, since $(1 \pm 3i)/2$ are not in R.

1B. (a) Prove that there is no continuously differentiable, measure-preserving bijective function $f: \mathbb{R} \to \mathbb{R}_{>0}$.

(b) Find an example of a continuously differentiable, measure-preserving bijective function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}_{>0}$.

Solution: For either (a) or (b), the measure-preserving condition is that the Jacobian determinant J(f) has absolute value 1 everywhere. By continuity, we must have J(f) = 1 or J(f) = -1 identically. In (a), this would mean f'(x) = 1 or f'(x) = -1, so f(x) = c + x or f(x) = c - x. Thus f cannot map \mathbb{R} into $\mathbb{R}_{>0}$. One possible example for (b) is $f(x,y) = (e^{-y}x, e^{y})$.

2B. For an analytic function h on \mathbb{C} , let $h^{(i)}$ denote its *i*-th derivative. (If i = 0, then $h^{(i)} = h$.) Suppose that f and g are analytic functions on \mathbb{C} satisfying

$$f^{(n)} + a_{n-1}f^{(n-1)} + \dots + a_0f^{(0)} = 0$$
$$g^{(m)} + b_{m-1}g^{(m-1)} + \dots + b_0g = 0$$

for some constants $a_0, \ldots, a_{n-1}, b_0, \ldots, b_{m-1} \in \mathbb{C}$. Show that the product function F = fg satisfies

$$c_{mn}F^{(mn)} + c_{mn-1}F^{(mn-1)} + \dots + c_0F = 0$$

for some constants $c_0, \ldots, c_{mn} \in \mathbb{C}$ not all zero.

Solution: By induction on k, the function $F^{(k)}$ is a linear combination of the mn functions $f^{(i)}g^{(j)}$ for $0 \le i < n, 0 \le j < m$, with constant coefficients. Therefore the mn + 1 functions $F^{(0)}, \ldots, F^{(mn)}$ are linearly dependent over \mathbb{C} .

3B. Let f be an entire function such that $\operatorname{Re} f(z) \geq -2$ for all $z \in \mathbb{C}$. Show that f is constant.

Solution: The function $g(z) = e^{-f(z)}$ is entire, and $|g(z)| = e^{-\operatorname{Re}f(z)} \leq e^2$. Liouville's Theorem implies that g is constant, say g(z) = c. Clearly $c \neq 0$. Then f maps the connected set \mathbb{C} into the discrete set of all logarithms of c, so f is constant.

4B. Suppose G is a nonabelian simple group, and A is its automorphism group. Show that A contains a normal subgroup isomorphic to G.

Solution: For g in G, let $c_g : G \to G$ be the inner automorphism $c_g(h) = ghg^{-1}$. Then it is easy to check that $g \mapsto c_g$ defines a homomorphism $G \to A$. It is nontrivial since Gis nonabelian, and thus an injection since G is simple. Let B be the image, so $B \simeq G$. If $\alpha \in A$ and $g, h \in G$, then

$$\alpha(c_g(h)) = \alpha(ghg^{-1}) = \alpha(g)\alpha(h)\alpha(g)^{-1} = c_{\alpha(g)}(\alpha(h)),$$

so $\alpha \circ c_g = c_{\alpha(g)} \circ \alpha$ in A. Thus $\alpha \circ c_g \circ \alpha^{-1} = c_{\alpha(g)}$, so B is normal in G.

5B. Let C and D be nonempty closed subsets of \mathbb{R}^n , and assume that C is bounded. Prove that there exist points $x_0 \in C$ and $y_0 \in D$ such that $d(x_0, y_0) \leq d(x, y)$ for all $x \in C$, $y \in D$. Here d(x, y) denotes the Euclidean metric on \mathbb{R}^n .

Solution: It follows from the triangle inequality that d(x, y) is uniformly continuous as a real-valued function on $C \times D$. If C and D were both bounded, then $C \times D$ would be compact and d(x, y) would attain its minimum. In the general case, let d_0 be the infimum of d(x, y) on $C \times D$. Let B_{R_0} be a closed ball of radius R_0 around the origin containing C, and set $R_1 = R_0 + d_0 + \epsilon$, for some arbitrary $\epsilon > 0$. Then for $y \notin B_{R_1}$, we clearly have $d(x, y) > d_0 + \epsilon$ for all $x \in C$. It follows that $D \cap B_{R_1}$ is non-empty, and the infimum of d(x, y) on $C \times (D \cap B_{R_1})$ is equal to d_0 . Since $C \times (D \cap B_{R_1})$ is compact, the minimum is attained for some $(x_0, y_0) \in C \times (D \cap B_{R_1})$.

6B. Let $\operatorname{GL}_2(\mathbb{C})$ denote the group of invertible 2×2 matrices with coefficients in the field of complex numbers. Let $\operatorname{PGL}_2(\mathbb{C})$ denote the quotient of $\operatorname{GL}_2(\mathbb{C})$ by the normal subgroup $\left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} : \lambda \in \mathbb{C}^* \right\}$. Let *n* be a positive integer, and suppose that *a*, *b* are elements of $\operatorname{PGL}_2(\mathbb{C})$ of order exactly *n*. Prove that there exists $c \in \operatorname{PGL}_2(\mathbb{C})$ such that cac^{-1} is a power of *b*.

Solution: Choose $A \in \operatorname{GL}_2(\mathbb{C})$ representing a. Then $A^n = \lambda I$ for some $\lambda \in \mathbb{C}^*$. By dividing A by an n-th root of λ , we may assume without loss of generality that $A^n = I$. Since the polynomial $x^n - 1$ has distinct roots, A is diagonalizable, and the eigenvalues must be n-th roots of unity. Without loss of generality, we may conjugate, and divide A by the first root of unity, to assume that $A = \begin{pmatrix} 1 & 0 \\ 0 & \zeta \end{pmatrix}$. If for some $m \ge 1$, $A^m = sI$ for some $s \in \mathbb{C}^*$, then comparing upper left hand corners shows that s = 1. Since the order of a is exactly n, the previous sentence implies that A has order exactly n, so that ζ is a primitive n-th root of unity.

Similarly, *b* is represented by a matrix that is conjugate to $B = \begin{pmatrix} 1 & 0 \\ 0 & \zeta' \end{pmatrix}$ for some primitive *n*-th root of unity ζ' . Then ζ' is a power of ζ , so *B* is a power of *A*, and *b* is conjugate to a power of *a*.

7B. Let f(z) be a function that is analytic in the unit disk $D = \{|z| < 1\}$. Suppose that $|f(z)| \le 1$ in D. Prove that if f(z) has at least two fixed points z_1 and z_2 (that is, $f(z_j) = z_j$ for j = 1, 2), then f(z) = z for all $z \in D$.

Solution: Let S be a linear fractional transformation which maps D onto itself so that $S(0) = x_1$. Then $g = S^{-1} \circ f \circ S$ has the same properties as f and its two fixed points are $0 = S^{-1}(z_1)$ and $y = S^{-1}(z_2)$.

Since g(0) = 0 we can define the analytic function h(z) = g(z)/z. On the circle $|z| = 1 - \epsilon$ for fixed $\epsilon \in (0, 1)$, we have $|h(z)| = |g(z)|/|z| \le 1/(1-\epsilon)$, so the maximum principle implies $|h(z)| \le 1/(1-\epsilon)$ for $|z| \le 1-\epsilon$. This holds for arbitrarily small $\epsilon > 0$, so $|h(z)| \le 1$ for all $z \in D$.

On the other hand we know that h(y) = 1, so h assumes a maximum inside D. By the maximum principle h must be constant; that is, h = 1. This implies that g(z) = z and then f(z) = z.

8B. Let N = 30030, which is the product of the first six primes. How many nonnegative integers x less than N have the property that N divides $x^3 - 1$?

Solution: We want the number of solutions to $x^3 = 1$ in the ring $\mathbb{Z}/N\mathbb{Z}$. By the Chinese Remainder Theorem, $\mathbb{Z}/N\mathbb{Z}$ is isomorphic as a ring to $\prod_{p \in \{2,3,5,7,11,13\}} \mathbb{Z}/p\mathbb{Z}$. Thus the answer is $\prod_{p \in \{2,3,5,7,11,13\}} n_p$, where n_p is the number of solutions to $x^3 - 1$ in $\mathbb{Z}/p\mathbb{Z}$. Now n_p is the number of elements of order dividing 3 in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^*$. Since $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic of order p - 1, we have $n_p = 3$ if 3 divides p - 1, and $n_p = 1$ otherwise. Thus the answer is

$$n_2 n_3 n_5 n_7 n_{11} n_{13} = 1 \cdot 1 \cdot 1 \cdot 3 \cdot 1 \cdot 3 = 9.$$

9B. Let $A \subseteq \mathbb{R}$ be uncountable.

(a) Show that A has at least one accumulation point.

(b) Show that A has uncountably many accumulation points.

(Recall that a point is said to be an accumulation point of A if and only if it is the limit of a sequence of distinct terms from A.)

Solution:

(a) For $n \in \mathbb{Z}$ let $A_n = A \cap [n, n+1)$. Then $A = \bigcup_{n \in \mathbb{Z}} A_n$. Since A is uncountable, at least one of the sets A_n needs to be uncountable. Then we can find a sequence in A_n with distinct terms. This sequence is bounded, so it has a convergent subsequence. The limit of the subsequence is an accumulation point for A.

(b) Denote by B the set of accumulation points. Assume by contradiction that B is at most countable. The set B is closed, so its complement $\mathbb{R} \setminus B$ is open. Then we can represent it as a countable union of closed sets, $\mathbb{R} \setminus B = \bigcup C_n$. If B is at most countable then A must have uncountably many elements in $\mathbb{R} \setminus B$, therefore in one of the sets C_n . By part (a), $A \cap C_n$ has at least one accumulation point. C_n is closed, so this accumulation point is in C_n . This contradicts the fact that all accumulation points of A are in B which does not intersect C_n .