
Solutions to the Spring 2003 prelim

1A. Let k be a field, and let n ≥ 1. Prove that the following properties of an n× n matrix
A with entries in k are equivalent:

(a) A is a scalar multiple of the identity matrix.
(b) Every nonzero vector v ∈ kn is an eigenvector of A.

Solution: Obviously (a) implies (b). If (b) holds, then in particular, the standard basis
vectors ej are eigenvectors of A, so A is diagonal, say with entries Aii = λi. If λi 6= λj, then
A(ei + ej) = λiei + λjej is not a scalar multiple of ei + ej. This contradicts the hypothesis
that ei + ej is an eigenvector of A. Hence the diagonal entries λi are all equal and we have
(a).

2A. Define f : R2 → R by f(x, 0) = 0 and

f(x, y) =

(
1− cos

x2

y

) √
x2 + y2

for y 6= 0.
(a) Show that f is continuous at (0, 0).
(b) Calculate all the directional derivatives of f at (0, 0).
(c) Show that f is not differentiable at (0, 0).

Solution:
(a) We have |f(x, y)| ≤ 2

√
x2 + y2, and the latter tends to 0 as (x, y) → (0, 0).

(b) In the direction of (x, y) with y 6= 0, the directional derivative is

lim
t→0

f(tx, ty)

t
= lim

t→0

(
1− cos

t2x2

ty

) √
x2 + y2 = 0,

and the limit is trivially zero in the direction of (x, 0) for any x.

(c) If f were differentiable, the derivative would be zero, and then f(x, y)/
√

x2 + y2 → 0
as (x, y) → (0, 0). This is false, since if we approach (0, 0) along the curve x2/y = π, the

limit of f(x, y)/
√

x2 + y2 is 1− cos π = 2.

3A. Let M2(Q) denote the ring of 2 × 2 matrices with entries in Q. Let R be the set of

matrices in M2(Q) that commute with

(
1 1
0 1

)
.

(a) Prove that R is a subring of M2(Q).
(b) Prove that R is isomorphic to the ring Q[x]/(x2).

Solution:

(a) Let N =

(
1 1
0 1

)
. If A, B ∈ R, then (A+B)N = AN+BN = NA+NB = N(A+B), so

A + B ∈ R. If A, B ∈ R, then (AB)N = A(BN) = A(NB) = (AN)B = (NA)B = N(AB),
so AB ∈ R. If I is the identity matrix, then clearly −I ∈ R. These three facts imply that
R is a subring.
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(b) Calculating shows that the matrix A =

(
a b
c d

)
belongs to R if and only if a = a + c,

a + b = b + d, and c + d = d, that is, if and only if A has the form

(
a b
0 a

)
. We define

a Q-algebra homomorphism h : Q[x] → R by mapping x to

(
0 1
0 0

)
. Clearly h(x2) =(

0 1
0 0

)2

= 0, so h induces a homomorphism Q[x]/(x2) → R. Since h(a + bx) =

(
a b
0 a

)
,

this homomorphism Q[x]/(x2) → R is an isomorphism.

4A. Prove that for each integer n ≥ 0 there is a polynomial Tn(x) with integer coefficients
such that the identity

2 cos nz = Tn(2 cos z)

holds for all z.

Solution: Put q = eiz, so 2 cos z = q + q−1, and 2 cos nz = qn + q−n. Then the problem is
to find Tn such that Tn(q + q−1) = qn + q−n. We have

(q+q−1)n =
n∑

k=0

(
n

k

)
q2k−n = qn+q−n+

∑
0<j<n

n− j even

(
n

(n− j)/2

)
(qj+q−j)+

{(
n

n/2

)
if n is even,

0 otherwise.

We can assume we have found Tj for j < n by induction. Then

Tn(x) = xn −
∑

0<j<n
n− j even

(
n

(n− j)/2

)
(Tj(x))−

{(
n

n/2

)
if n is even,

0 otherwise

has the required property.

5A. Let L be a real symmetric n× n matrix with 0 as a simple eigenvalue, and let v ∈ Rn.
(a) Show that for sufficiently small positive real ε, the equation Lx + εx = v has a unique

solution x = x(ε) ∈ Rn.
(b) Evaluate limε→0+ εx(ε) in terms of v, the eigenvectors of L, and the inner product ( , )

on Rn.

Solution: Since L is real and symmetric, Rn has an orthonormal basis of eigenvectors
e1, . . . , en of L. Let λ1, . . . , λn be the associated eigenvalues. Without loss of generality,
λ1 = 0 and λi 6= 0 for i > 1. Write v =

∑n
i=1 viei and x =

∑
xiei with vi, xi ∈ R. The

equation Lx+εx = v is equivalent to λixi +εxi = vi for each i, which has the unique solution
xi = vi/(λi + ε), provided that 0 < ε < mini6=1 |λi|. Now

εx =
∑

εxiei =
∑ ε

λi + ε
viei.

As ε → 0, all terms in the sum on the right tend to 0 except the first, which tends to
v1e1 = (v, e1)e1.

6A. Let xn be a sequence of real numbers so that limn→∞(2xn+1 − xn) = x. Show that
limn→∞ xn = x.

2



Solution: First show that {xn} is bounded. We know that the sequence {2xn+1 − xn} is
bounded. Then we can choose M large so that |x1| ≤ M and |2xn+1 − xn| ≤ M for all n.
We prove by induction that |xn| ≤ M for all n. Indeed, suppose that |xn| ≤ M . Then

|xn+1| = |xn + (2xn+1 − xn)

2
| ≤ 1

2
(|xn|+ |2xn+1 − xn|) ≤ M

This concludes the induction and shows that {xn} is bounded.
Now write again

xn+1 =
xn + (2xn+1 − xn)

2
and take lim sup. We get

lim sup xn ≤
lim sup xn + x

2
which gives lim sup xn ≤ x. Similarly we get lim inf xn ≥ x. Together these two inequalities
imply that lim xn = x.

7A. (a) Suppose that H1 and H2 are subgroups of a group G such that H1∪H2 is a subgroup
of G. Prove that either H1 ⊆ H2 or H2 ⊆ H1.

(b) Show that for each integer n ≥ 3, there exists a group G with subgroups H1, H2, . . . ,
Hn, such that no Hi is contained in any other, and such that H1∪H2∪· · ·∪Hn is a subgroup
of G.

Solution:
(a) If not, there exists h1 ∈ H1 − H2 and h2 ∈ H2 − H1. Since h1 and h2 belong to the

subgroup H1 ∪ H2, we also have h1h2 ∈ H1 ∪ H2. If h1h2 ∈ H1, we get the contradiction
h2 = h−1

1 (h1h2) ∈ H1. If h1h2 ∈ H2, we get the contradiction h1 = (h1h2)h
−1
2 ∈ H2.

(b) Let G = (Z/2Z)n−1. For 1 ≤ i ≤ n− 1, let Hi = { (x1, . . . , xn−1) ∈ G : xi = 0 }. Then
H1 ∪ · · · ∪Hn−1 = G− {(1, 1, . . . , 1)}. Let Hn = { (x1, . . . , xn−1) ∈ G : x1 + x2 = 0 }. Then
(1, 1, . . . , 1) ∈ Hn, so H1 ∪ · · · ∪ Hn = G. No Hi is contained in any other, since they are
distinct subgroups of the same order.

8A. Evaluate
∫∞

0
e−x2

cos x2 dx.

Solution: It is the real part of

I :=

∫ ∞

0

e−(1+i)x2

dx =

∫ ∞

0

e−
√

2eiπ/4x2

dx =

∫ ∞

0

e−
√

2(eiπ/8x)2 dx.

Let C denote the wedge-shaped closed contour consisting of the straight path from 0 to
R > 0, the arc γ given by eitR as t goes from 0 to π/8, and the straight path from eiπ/8R

to 0. By Cauchy’s Theorem,
∫

C
e−

√
2z2

dz = 0. But
∫

γ
e−

√
2z2

dz → 0 as R → ∞, since the

integrand is bounded in absolute value by |e−
√

2eiπ/4R2| = e−R2
along γ, while the length of

γ is O(R). Thus
∫

C
e−

√
2z2

dz = 0 implies

0 =

∫ ∞

0

e−
√

2z2

dz −
∫ ∞

0

e−
√

2(eiπ/8x)2 d(eiπ/8x)

or equivalently,

0 = 2−1/4

∫ ∞

0

e−u2

du− eiπ/8I,
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so I = 2−1/4e−iπ/8
√

π
2

. Thus the answer, which is the real part of I, is

2−5/4(cos π/8)
√

π.

9A. Let R be the set of complex numbers of the form

a + 3bi, a, b ∈ Z.

Prove that R is a subring of C, and that R is an integral domain but not a unique factorization
domain.

Solution: It’s routine to verify that R is an additive subgroup and is closed under multi-
plication. Since C is a field, any subring is an integral domain. Consider two factorizations
of the integer 10 in R, namely 10 = 2 · 5 and 10 = (1 + 3i)(1− 3i). The norm |z|2 = a2 + 9b2

of any z ∈ R is an integer, and if |z|2 < 9 then b = 0, so z is a real integer. This implies
in particular that 2 has no non-trivial factorization in R. If R were a UFD, then 2 would
divide 1 + 3i or 1− 3i. But that can’t be, since (1± 3i)/2 are not in R.

1B. (a) Prove that there is no continuously differentiable, measure-preserving bijective func-
tion f : R → R>0.

(b) Find an example of a continuously differentiable, measure-preserving bijective function
f : R× R → R× R>0.

Solution: For either (a) or (b), the measure-preserving condition is that the Jacobian
determinant J(f) has absolute value 1 everywhere. By continuity, we must have J(f) = 1
or J(f) = −1 identically. In (a), this would mean f ′(x) = 1 or f ′(x) = −1, so f(x) = c + x
or f(x) = c− x. Thus f cannot map R into R>0. One possible example for (b) is f(x, y) =
(e−yx, ey).

2B. For an analytic function h on C, let h(i) denote its i-th derivative. (If i = 0, then
h(i) = h.) Suppose that f and g are analytic functions on C satisfying

f (n) + an−1f
(n−1) + · · ·+ a0f

(0) = 0

g(m) + bm−1g
(m−1) + · · ·+ b0g = 0

for some constants a0, . . . , an−1, b0, . . . , bm−1 ∈ C. Show that the product function F = fg
satisfies

cmnF
(mn) + cmn−1F

(mn−1) + · · ·+ c0F = 0

for some constants c0, . . . , cmn ∈ C not all zero.

Solution: By induction on k, the function F (k) is a linear combination of the mn functions
f (i)g(j) for 0 ≤ i < n, 0 ≤ j < m, with constant coefficients. Therefore the mn + 1 functions
F (0), . . . , F (mn) are linearly dependent over C.

3B. Let f be an entire function such that Re f(z) ≥ −2 for all z ∈ C. Show that f is
constant.

Solution: The function g(z) = e−f(z) is entire, and |g(z)| = e−Ref(z) ≤ e2. Liouville’s
Theorem implies that g is constant, say g(z) = c. Clearly c 6= 0. Then f maps the connected
set C into the discrete set of all logarithms of c, so f is constant.
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4B. Suppose G is a nonabelian simple group, and A is its automorphism group. Show that
A contains a normal subgroup isomorphic to G.

Solution: For g in G, let cg : G → G be the inner automorphism cg(h) = ghg−1. Then
it is easy to check that g 7→ cg defines a homomorphism G → A. It is nontrivial since G
is nonabelian, and thus an injection since G is simple. Let B be the image, so B ' G. If
α ∈ A and g, h ∈ G, then

α(cg(h)) = α(ghg−1) = α(g)α(h)α(g)−1 = cα(g)(α(h)),

so α ◦ cg = cα(g) ◦ α in A. Thus α ◦ cg ◦ α−1 = cα(g), so B is normal in G.

5B. Let C and D be nonempty closed subsets of Rn, and assume that C is bounded. Prove
that there exist points x0 ∈ C and y0 ∈ D such that d(x0, y0) ≤ d(x, y) for all x ∈ C, y ∈ D.
Here d(x, y) denotes the Euclidean metric on Rn.

Solution: It follows from the triangle inequality that d(x, y) is uniformly continuous as
a real-valued function on C × D. If C and D were both bounded, then C × D would be
compact and d(x, y) would attain its minimum. In the general case, let d0 be the infimum
of d(x, y) on C ×D. Let BR0 be a closed ball of radius R0 around the origin containing C,
and set R1 = R0 + d0 + ε, for some arbitrary ε > 0. Then for y 6∈ BR1 , we clearly have
d(x, y) > d0 + ε for all x ∈ C. It follows that D ∩ BR1 is non-empty, and the infimum of
d(x, y) on C × (D ∩ BR1) is equal to d0. Since C × (D ∩ BR1) is compact, the minimum is
attained for some (x0, y0) ∈ C × (D ∩BR1).

6B. Let GL2(C) denote the group of invertible 2 × 2 matrices with coefficients in the field
of complex numbers. Let PGL2(C) denote the quotient of GL2(C) by the normal subgroup{(

λ 0
0 λ

)
: λ ∈ C∗

}
. Let n be a positive integer, and suppose that a, b are elements of

PGL2(C) of order exactly n. Prove that there exists c ∈ PGL2(C) such that cac−1 is a power
of b.

Solution: Choose A ∈ GL2(C) representing a. Then An = λI for some λ ∈ C∗. By
dividing A by an n-th root of λ, we may assume without loss of generality that An = I.
Since the polynomial xn−1 has distinct roots, A is diagonalizable, and the eigenvalues must
be n-th roots of unity. Without loss of generality, we may conjugate, and divide A by the

first root of unity, to assume that A =

(
1 0
0 ζ

)
. If for some m ≥ 1, Am = sI for some s ∈ C∗,

then comparing upper left hand corners shows that s = 1. Since the order of a is exactly n,
the previous sentence implies that A has order exactly n, so that ζ is a primitive n-th root
of unity.

Similarly, b is represented by a matrix that is conjugate to B =

(
1 0
0 ζ ′

)
for some primitive

n-th root of unity ζ ′. Then ζ ′ is a power of ζ, so B is a power of A, and b is conjugate to a
power of a.
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7B. Let f(z) be a function that is analytic in the unit disk D = {|z| < 1}. Suppose that
|f(z)| ≤ 1 in D. Prove that if f(z) has at least two fixed points z1 and z2 (that is, f(zj) = zj

for j = 1, 2), then f(z) = z for all z ∈ D.

Solution: Let S be a linear fractional transformation which maps D onto itself so that
S(0) = x1. Then g = S−1 ◦ f ◦ S has the same properties as f and its two fixed points are
0 = S−1(z1) and y = S−1(z2).

Since g(0) = 0 we can define the analytic function h(z) = g(z)/z. On the circle |z| = 1− ε
for fixed ε ∈ (0, 1), we have |h(z)| = |g(z)|/|z| ≤ 1/(1− ε), so the maximum principle implies
|h(z)| ≤ 1/(1− ε) for |z| ≤ 1− ε. This holds for arbitrarily small ε > 0, so |h(z)| ≤ 1 for all
z ∈ D.

On the other hand we know that h(y) = 1, so h assumes a maximum inside D. By the
maximum principle h must be constant; that is, h = 1. This implies that g(z) = z and then
f(z) = z.

8B. Let N = 30030, which is the product of the first six primes. How many nonnegative
integers x less than N have the property that N divides x3 − 1?

Solution: We want the number of solutions to x3 = 1 in the ring Z/NZ. By the Chinese
Remainder Theorem, Z/NZ is isomorphic as a ring to

∏
p∈{2,3,5,7,11,13} Z/pZ. Thus the answer

is
∏

p∈{2,3,5,7,11,13} np, where np is the number of solutions to x3 − 1 in Z/pZ. Now np is the

number of elements of order dividing 3 in the multiplicative group (Z/pZ)∗. Since (Z/pZ)∗

is cyclic of order p − 1, we have np = 3 if 3 divides p − 1, and np = 1 otherwise. Thus the
answer is

n2n3n5n7n11n13 = 1 · 1 · 1 · 3 · 1 · 3 = 9.

9B. Let A ⊆ R be uncountable.
(a) Show that A has at least one accumulation point.
(b) Show that A has uncountably many accumulation points.

(Recall that a point is said to be an accumulation point of A if and only if it is the limit of
a sequence of distinct terms from A.)

Solution:
(a) For n ∈ Z let An = A ∩ [n, n + 1). Then A = ∪n∈ZAn. Since A is uncountable, at

least one of the sets An needs to be uncountable. Then we can find a sequence in An with
distinct terms. This sequence is bounded, so it has a convergent subsequence. The limit of
the subsequence is an accumulation point for A.

(b) Denote by B the set of accumulation points. Assume by contradiction that B is at
most countable. The set B is closed, so its complement R\B is open. Then we can represent
it as a countable union of closed sets, R \B = ∪Cn. If B is at most countable then A must
have uncountably many elements in R \ B, therefore in one of the sets Cn. By part (a),
A ∩ Cn has at least one accumulation point. Cn is closed, so this accumulation point is in
Cn. This contradicts the fact that all accumulation points of A are in B which does not
intersect Cn.
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