Spring 2004 Prelim Solutions

1A. Consider a sequence of functions f,,: [a,b] — R with the property that for each x € [a, b]
there is an open interval I, containing x such that (f,),>1 converges uniformly in I, N a, b].
Show that (f,)n,>1 converges uniformly in [a, b].

Solution: For each x € [a, b], the sequence (f,,) converges uniformly on I,,, and in particular
converges pointwise at x. Let f: [a,b] — R be the pointwise limit of (f,,). The compact set
la, b] is covered by the collection of open intervals I, so there is a finite subcovering, say
la,b] C U, L. Given € > 0, there exists Ny such that for n > Ny, the difference |f, — f]
is bounded by € on I, . Let N := max(Ny, ..., N,,). Then for n > N, the difference |f,, — f]
is bounded by € on all of [a,b]. Hence by definition, (f,,) converges to f uniformly.

2A. Find a countable abelian group whose endomorphism ring has the same cardinality as
the set of real numbers. Justify your answer.

Solution: Let GG be a vector space of dimension 8y over F5. Then G is countable, since it
is a countable union of finite subspaces. Let vy, vs,... be a basis. For each S C {1,2,3,...},
there is an endomorphism of G mapping each v; to v; or 0 according to whether ¢ € S.
Different subsets S give different endomorphisms, so # End G > 2%, On the other hand,

#End G < (#G)*C = Rj© < (2%0)N0 = gMoNo — g%,
Thus # End G = 2% = #R.

3A. Let aq,...,a,,bq1,...,b, be distinct complex numbers, let r{,...,r, be nonnegative
integers, and let ¢q,..., ¢, be complex numbers. Prove that if m <r; +---+ 17, + 1, then
there exists a rational function F'(z) € C(z) satisfying all of the following:

1. F(z) is holomorphic at co and everywhere in C except possibly at aq, ..., a,.
2. ord,—,, F(2) > —r;
3. F(bj)=cjforj=1,...,m.

Solution: Write F'(z) = G(2)/ ;- (z —a;)"#, where G(z) € C(z) is to be determined. The
condition that F' be holomorphic on C except for poles of order at most r; at a; corresponds to
the condition that G(z) be holomorphic on C, hence a polynomial. The condition that F'(z)
be holomorphic at co corresponds to the condition deg G < ry + - - -+ r,,. The m conditions
F(b;) = ¢; correspond to conditions G(b;) = ¢ where ¢ = ¢;[[;_,(b; — a;)"". These m
conditions can be satisfied by a polynomial of degree m — 1 (which is < 7y + -+ +1,), by
the Lagrange interpolation formula. Alternatively,

{ polynomials of degree <m —1} — C™
G(z) — (G(b1),...,G(bm))

is a linear map between C-vector spaces of the same finite dimension, and is injective (since
a nonzero polynomial of degree < m — 1 has at most m — 1 zeros), so it is also surjective.

4A. For which positive integers n is it true that every invertible 2 x 2 matrix A with real

entries can be expressed as the n-th power of another 2 x 2 matrix with real entries?
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Solution: The answer is the odd positive integers. If n is even, then ( 0 ?) cannot be

the n-th power of another 2 x 2 matrix with real entries, because its determinant is not an
n-th power of a real number.

Now assume n is odd. Thus every real number is an n-th power of a real number. The
question of whether A is an n-th power is not affected by conjugation. Thus if A has distinct
real eigenvalues, then without loss of generality we may assume that A is diagonal, in which
we take the n-th roots of the diagonal entries to find another diagonal matrix B with B" = A.

If A has equal real eigenvalues, then by conjugation, we may assume

1 ¢
AZA(O 1)

where A € R* and ¢ € R. Then A = B™ where
1 ¢/n
_\1/n
e (1 Y.

Finally if the eigenvalues of A are not real, then the minimal polynomial of A is a quadratic
polynomial f(z) with no real roots, so the R-subalgebra R[A] of M3(R) generated by A is
isomorphic to R[z|/(f(x)) ~ C. Since every element of C has an n-th root, the matrix A
has an n-th root in R[A].

5A. Suppose f: R — C satisfies f/(t) + 2it f(t) = €** and f(0) = 0. Compute
lim_ ¢ (£(t) — f(~1).

t—+o0

You may assume [;° e~ dt = /7/2.
Solution: Multiply the ODE by the integrating factor ¢, and integrate to get
t
¢f(t) = / e gy
0

(The hypothesis f(0) = 0 implies that there is no constant of integration.) Substituting —¢
for t and subtracting, we get
t

) - 1) = [

—t

t
= e_i/ T g
t

s
= 6_1/ e dz.
—t+1

Since *” is an even function, the limit as ¢ — —+o0 equals 2¢ 1, where I := limp_.4 o fOR e* dz
(assuming for now that the latter limit exists). Apply Cauchy’s Theorem to the triangular
contour from 0 to R to R + Ri and back to 0. The vertical part contributes

RtRi R
/ e dz :/ B 4 gt
R 0
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whose absolute value is bounded by

R - R
/ |€'L(R+tz) ‘ dt = / 672Rt dt
0 0

1 2R?
= ﬁ €_u du,
0
which goes to 0 as R — oo. Thus
RRi
I= I%im e* dz (if the limit exists)
de el 0
= I%im el i/ gy (if the limit exists)
—o0 Jo
. R 2
= ¢im/4 F%im e " dt (if the limit exists)
_ maVT
5

Thus we now know that all the limits exist, and the answer is 2e 7] = e~"+/4, /1.

6A. For which pairs of integers (a,b) is the quotient ring Z[x]/(2* + ax + b) isomorphic (as
a ring) to the direct product of rings Z x Z?

Solution: Let A = Z[z]/(z* 4+ ax +b) and B =Z x Z. If 2? + ax + b is irreducible in the
UFD Z[z], then (2 + ax + b) is a prime ideal, so A is a domain. But B is not a domain.
Thus we may assume 22 + azx + b = (z — ¢)(z — d) for some ¢,d € Z.

Suppose p is a prime integer dividing ¢ — d. Then A ~ B implies A/pA ~ B/pB; that
is, F,[z]/(z — ¢)? ~ F, x F,, where ¢ = d is the image of ¢ in F,. The ring on the left has
a nonzero element with square 0, namely x — ¢, whereas the right hand side has no such
element. This contradiction shows that ¢ — d is divisible by no primes, so ¢ — d = £1.

Conversely, if ¢ —d = £1, then the sum of the ideals (x —¢) and (z —d) in Z[z] is the unit
ideal, and their product equals their intersection (since they are generated by non-associate
irreducible elements), so the Chinese Remainder Theorem gives

Zle) 2] 2
(z=c)z—=d)  (x-¢ (r—d)
Each factor on the right is isomorphic to Z, because each polynomial in Z[z] is uniquely
expressible as ¢(x)(z — ¢) + r with ¢(z) € Z[z] and r € Z. Thus ¢ —d = £1 implies A ~ B.
In other words, the answer is the set of (a,b) such that z* + az + b has the form (z —
n)(x — (n+ 1)); that is,

{(=@2n+1),n(n+1)):neZ}.

*sinz

dz.

7A. Evaluate /
0 T
Solution: For R > 1, let 7; be the straight line path from 1/R to R, let v be the straight
line path from R to R + Ri, let v3 be the straight line path from R+ R: to —R + Ri, let 4
be the straight line path from —R + Ri to —R, let +5 be the straight line path from —R to
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—1/R, and let 4 be the upper semicircle from —1/R to 1/R given by the parameterization
v6(t) = €' for t running from 7 to 0. Let v be the closed loop formed by concatenating these

six paths. Cauchy’s Theorem implies that fw % dz = 0.

We have
iz R —t _ ,—R
/e—dzg/ Cm-lTC g
Y2 < 0

R R
as R — oo. Similarly f74 € dz — 0, and

iz R —R
/e—dz §/ 6—dt:26_R—>O.
vg % R

-R
On the other hand, e**z differs from 1/z by a holomorphic function, and ~ is shrinking to
a point, so

lim/e—dz: lim ldz
e z

R—o0 R—o0 6 z
0 1 y

= —71.

eiz eiz .
/ —dz + / —dz — T
7 z 5 <

as R — oo. Taking imaginary parts and using the fact that (sin z)/z is an even function, we

find that
R .
2/ S dz — 7
1/R *

Thus

as R — oo. Since (sin z)/z is holomorphic, it does not hurt to replace the lower limit 1/R
by 0, so [;° 222 dx = 7 /2.

8A. Let V and W be finite-dimensional vector spaces over a field k. Let f: V" — W be a
function such that

(a) For each fixed i € {1,...,n} and fixed vy,...,v;_1,0i11,...,0, € V, the map

V-Ww
x = f(Ur, Vi, TV, V)
is a k-linear transformation; and
(b) f(v1,...,v,) =0 whenever v; = v;4; for some i € {1,...,n—1}.

Prove that either dimV' > n or f is identically zero.
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Solution: Fix i, and vy, ..., v;_1, V42, ...,v, € V,and define g(z,y) = f(v1,...,0i_1, 2, Y, Vita, - - .

Then
0=g(@+yz+y)
=gz +y.z)+g@+yy)
=g(z,z) + gy ) + 9(z,y) + 9(y. y)
=9(y,z) + g(z,y)
so interchanging adjacent arguments changes the sign of the value of f.

Suppose vy, ...,v, € V are such that v; = v; for some ¢ < j. Then we can interchange
arguments repeatedly to move v; to the ¢ + 1 position, possibly changing the sign of the
value of f(vq,...,v,) as we go along. Since at the end the result is zero, we must have had
f(v1,...,v,) =0 originally. Thus f(v1,...,v,) = 0 whenever v; = v; for some i # j.

We now solve the problem. If the conclusion fails, we have dimV' < n and there exist
U1, .., € Vowith f(ug,...,v,) # 0. Since dimV < n, the vectors vy, ...,v, must be

linearly dependent. Thus for some i, we can write v; = ) i CjU; for some constants ¢; € k
for j # i. By linearity of f in the i-th argument,

flog, ... v,) = chf(vla---avi—lavjavi—I—la ey Up)
J#i

:ZC]"O

JF

by the previous paragraph, since in each term some v; appears twice as an argument. Thus
f(v1,...,v,) =0, a contradiction.

9A. Let f: R™ — R"™ be a differentiable function, and let L be a nonnegative real number.
Prove that the following are equivalent:

(i) For every z,y € R",
(f(@) = fY)-(z —y) < Lz —y|
(ii) For every z,v € R",
Df(z)v.w < L|v|?,
where D f(z) is the derivative of f at x, and . denotes the standard inner product of vectors

in R™.

Solution:
(i) = (ii): Let © =y + tv. Then (i) says

tf(y+tv) — fy)v < LE*|v]>.

Divide by t* and take the limit as ¢ — 0 to deduce D f(y)v.v < L|v|?.
5
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(i) = (i): Let ¢(t) = f(y + t(x —y)) for t € R. Then
f(@) = f(y) = o(1) — ¢(0)

/0 &(t) dt

= /1 Df(y+tlx—y))(r—y)dt (by the Chain Rule).
0

SO

(F(2) — ()& —y) = / Df(y+t(x — 9)(x — y).(x — y) dt

1
< / Llz—y?dt (by (i)
0
= Llz —y%.

1B. Let F be a field (of arbitrary characteristic). Suppose g is a nonnegative integer, and
polynomials a(z),b(z) € Flz] satisfy dega(x) < g and degb(z) = 2g + 1. Prove that the
polynomial y? + a(z)y + b(z) is irreducible over F(z).

Solution: If instead it factors in F'(x)[y| into polynomials of y-degree > 1, then by Gauss’s
Lemma, it factors in F[z|[y] = F[z,y] into polynomials of y-degree > 1. Thus we would
have

y* +a(z)y +b(x) = (y + p(x))(y + q(x))
for some p(x), q(x) € F|x]. Since p(z)q(x) = b(x) has odd degree, p(z) and ¢(z) have distinct
degrees, so

deg(p(z) + q(x)) = max(deg p(z), deg q(x)) = (degp(x) + degq(x))/2 = (29 +1)/2 > g.
This contradictions dega(z) = g.

2B. Find the maximum possible value of |f’(1)| given that f is holomorphic on an open
neighborhood of {z € C : |z| < 2} and satisfies |f(z)| < 1 when |z| = 2.

Solution: We will use a fractional linear transformation to change the problem to one
where the derivative is evaluated at the center of a disk.

The function z — 2 (£1) on |z| = 2 has absolute value 1, and it extends to a fractional
linear transformation g(z) = 2 (j:i) Since it also maps z = 1 to the interior of the unit disk,
it must map the region |z| < 2 bijectively onto the unit disk. We calculate |¢'(1)| = 2/3.

Now, for any other f mapping the circle |z| = 2 into |z| < 1, the composition h := fog™!
is holomorphic on a neighborhood of |z| < 1, and maps |z| = 1 into |z| < 1. Taking absolute
values in

27

dz

= 2

|z
gives |h/(0)] < 1. Since ¢g7'(0) = 1, the Chain Rule gives #'(0) = f'(1)¢’(1)~'. Thus
If/(D)] =|r(0)]l¢'(1)] <|¢'(1)] =2/3. Thus 2/3 is the maximum possible value of |f'(1)].
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3B. Let A be a d x d matrix with complex entries. Assume that every eigenvalue of A has
absolute value 1. Prove that there exists a constant ¢ € R independent of n such that

|A™2]| < en™ |||

for all n > 1 and z € C%. Here ||z|| := (Jz1]? + - -+ + |z4|?)Y? for all (zy,...,24) € C

Solution: We may use |z|o := max{|zi|,..., |z,|} instead of ||z]|, since different norms on
a finite-dimensional vector space are bounded by positive constants times each other. Then
it suffices to show that the entries of A" are O(n?~1) as n — oo. This property is unchanged
if we conjugate all the A™ by a fixed invertible matrix. Thus we may assume that A is in
Jordan canonical form. Thus A = D + N where D is diagonal, NN is nilpotent, and D and
N commute. By the Cayley-Hamilton theorem, N¢ = 0. Thus the binomial theorem gives
A" = D" + (TL) anlN + (’I’L) an2N2 4o+ ( n )DndJrlNdl.
1 2 d—1
The diagonal entries of D are the eigenvalues of A, which have absolute value 1, so the
entries of D™ are O(1) for any m. The entries of N, N2, ..., N9 do not depend on n. The
binomial coefficients are O(n?~!). Thus the entries of A" are O(n?~!), as desired.

4B. Let a4, ..., a, be positive real numbers. Let A be the set of points x € R" satisfying the

conditions
n

Zaixi =1, x; >0 for all 7.

i=1
Prove that the function log(]];_, z;) has a unique maximum on A and find the point where
1t occurs.

Solution: The given function is continuous and approaches —oo at every point on the
boundary of A (since each z; is bounded above, and at least one of them approaches zero
at every point on the boundary). Hence a maximum exists. By Lagrange multipliers,
at a maximum we must have d log([["_, z;) = Ad>_._, a;z; for some A, or Y . dx;/x; =
AY o apdx;. Hence (z1,...,2,) = (1/A)(1/a4,...,1/a,). Combining this with the equation
> . a;x; = 1 shows that A = n and (z1,...,2,) = (1/n)(1/aq,...,1/a,). This locates the
maximum and proves that it is unique.

Alternative solution: The arithmetic-mean—geometric-mean inequality gives

n 1/n
T‘Zlail‘i
200 (Tl )

i=1
with equality if and only if ayz; = -+ = a,x,. On A, the left hand side is constant, so we
get an upper bound on [[}_, z;, attained exactly when ajz; = -+ = a,z,. It follows that
there is a unique maximum where a;z; = 1/n for all i; that is, x; = 1/(na;) for all i.

5B. Let nq,...,n, be integers > 2. Prove that there is a finite group G containing elements
g1, -, gy such that g; has exact order n; for each 4, and g;g; # g;¢; for ¢ # j.

Solution: Let Ti,...,T, be disjoint sets with #7; = n; — 1. Let S be the union of the T;

together with one more element x outside all the T;. Let G be the set of permutations of S.
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Choose g; € G such that g; acts as an n;-cycle on T; U {x}, and acts as the identity on the
complement. Then g; has order n;. If i # j, then (g;9;)(z) = gi(g;(z)) € ¢:(T;) = T}, and
similarly (g;9;)(z) € T, so gig; # 9;6i-

6B. Let (u,(z,y))n>1 be a sequence of functions that are defined and harmonic for (z,y) in
an open neighborhood of the upper half plane R x R>(. Suppose that %Ly"(x, 0) = 0 for all

x € R, and u,(z,0) converges to 0 as n — oo uniformly for z € R. Must u,(z,y) — 0 as
n — oo for every (z,y) € R x Ry(?

Solution: No. Let u,, = cosh(ny) cos(nz)/n. Since u, is the real part of the holomorphic
function cos(nz)/n, it is harmonic on the entire plane. Then %L;(x, 0) = —sinh(0) cos(nx) =
0, and u,(z,0) = cos(nx)/n — 0 as n — oo uniformly for € R. But w,(0,1) = cosh(n)/n
does not tend to 0 as n — oo.

7B. Let A and B be n x n matrices with complex entries, such that AB — BA is a linear
combination of A and B. Prove that there exists a nonzero vector v that is an eigenvector

of both A and B.

Solution: Let AB — BA = C = aA+ (B. If a = = 0, then A and B commute.
By a theorem of linear algebra, commuting complex matrices have a common eigenvector.
Otherwise, assume without loss of generality that 3 # 0. Then B is a linear combination
of A and C, so it suffices to prove that A and C' have a common eigenvector. Note that
AC — CA = pC. Since A has finitely many eigenvalues, it must have one, call it A, such
that A + (8 is not an eigenvalue of A. Let v be a nonzero vector with Av = Av. Then
ACv = CAv + Cv = (A + 3)Cv, so Cv = 0. Hence v is a common eigenvector of A and C.

8B. For each real number z, compute

Jimn ((1+3)" =¢7).
Solution: We have

n ((1 + %>n _ €x> —n (enlog(l-‘rx/n) _ 61‘)

— ne® (enlog(lJr:r/n)fx . 1) .
2

x z 1 [z 1
og (1+2) =2 -2 (L) +0(
st n n 2 <n2) * <n3)
where the constant in the big-O depends on z, but not on n. Substituting, we get
z2 1
ne’ (e_%+o<n2) — 1) .
Since ¢V = 1 +y + O(y?) as y — 0, this becomes
. x? 1 15 . 1
ne <—%+O (ﬁ)) =—5Te +0 (E) ,

er.

Taylor’s Theorem with Remainder gives

so the limit is —%xz



9B. Let Sy be the group of permutations of {1,2,3,4}. Determine the order of the automor-
phism group Aut(S,). Justify your answer.

Solution: The center of Sy is trivial, so Sy acts faithfully on itself by inner automorphisms.
We will then have |Aut(Sy)| = |Ss| = 24, if we can show that every automorphism of Sy is
inner.

Let o € Aut(S;). The group S; has exactly four subgroups H;, H,, Hs, H, of order
3, where H; contains the identity and the two 3-cycles that fix <. The automorphism o
must permute these subgroups. Since inner automorphisms permute them arbitrarily, we
can assume after multiplying o by an inner automorphism that o fixes each H;. The set
of transpositions is characterized as the unique conjugacy class consisting of 6 elements of
order 2, so o stabilizes it. Among the transpositions, each one 7 = (i j) is characterized by
the property that 7 and Hj generate Sy if and only if & € {i,j}. Therefore o fixes every
transposition. Since the transpositions generate Sy, o must be the identity.



