Spring 2004 Prelim Solutions

1A. Consider a sequence of functions $f_n: [a, b] \to \mathbb{R}$ with the property that for each $x \in [a, b]$ there is an open interval I_x containing x such that $(f_n)_{n\geq 1}$ converges uniformly in $I_x \cap [a, b]$. Show that $(f_n)_{n\geq 1}$ converges uniformly in [a, b].

Solution: For each $x \in [a, b]$, the sequence (f_n) converges uniformly on I_x , and in particular converges pointwise at x. Let $f: [a, b] \to \mathbb{R}$ be the pointwise limit of (f_n) . The compact set [a, b] is covered by the collection of open intervals I_x , so there is a finite subcovering, say $[a, b] \subset \bigcup_{k=1}^m I_{x_k}$. Given $\epsilon > 0$, there exists N_k such that for $n \ge N_k$, the difference $|f_n - f|$ is bounded by ϵ on I_{x_k} . Let $N := \max(N_1, \ldots, N_m)$. Then for $n \ge N$, the difference $|f_n - f|$ is bounded by ϵ on all of [a, b]. Hence by definition, (f_n) converges to f uniformly.

2A. Find a countable abelian group whose endomorphism ring has the same cardinality as the set of real numbers. Justify your answer.

Solution: Let G be a vector space of dimension \aleph_0 over \mathbb{F}_2 . Then G is countable, since it is a countable union of finite subspaces. Let v_1, v_2, \ldots be a basis. For each $S \subseteq \{1, 2, 3, \ldots\}$, there is an endomorphism of G mapping each v_i to v_i or 0 according to whether $i \in S$. Different subsets S give different endomorphisms, so $\# \operatorname{End} G \geq 2^{\aleph_0}$. On the other hand,

$$\#\operatorname{End} G \le (\#G)^{\#G} = \aleph_0^{\aleph_0} \le (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0}$$

Thus $\# \operatorname{End} G = 2^{\aleph_0} = \# \mathbb{R}$.

3A. Let $a_1, \ldots, a_n, b_1, \ldots, b_m$ be distinct complex numbers, let r_1, \ldots, r_n be nonnegative integers, and let c_1, \ldots, c_m be complex numbers. Prove that if $m \leq r_1 + \cdots + r_n + 1$, then there exists a rational function $F(z) \in \mathbb{C}(z)$ satisfying all of the following:

- 1. F(z) is holomorphic at ∞ and everywhere in \mathbb{C} except possibly at a_1, \ldots, a_n .
- 2. $\operatorname{ord}_{z=a_i} F(z) \ge -r_i$

3.
$$F(b_j) = c_j$$
 for $j = 1, ..., m$.

Solution: Write $F(z) = G(z) / \prod_{i=1}^{n} (z-a_i)^{r_i}$, where $G(z) \in \mathbb{C}(z)$ is to be determined. The condition that F be holomorphic on \mathbb{C} except for poles of order at most r_i at a_i corresponds to the condition that G(z) be holomorphic on \mathbb{C} , hence a polynomial. The condition that F(z) be holomorphic at ∞ corresponds to the condition deg $G \leq r_1 + \cdots + r_n$. The m conditions $F(b_j) = c_j$ correspond to conditions $G(b_j) = c'_j$ where $c'_j = c_j \prod_{i=1}^{n} (b_j - a_i)^{r_i}$. These m conditions can be satisfied by a polynomial of degree m - 1 (which is $\leq r_1 + \cdots + r_n$), by the Lagrange interpolation formula. Alternatively,

{ polynomials of degree
$$\leq m-1$$
 } $\rightarrow \mathbb{C}^m$
 $G(z) \mapsto (G(b_1), \dots, G(b_m))$

is a linear map between \mathbb{C} -vector spaces of the same finite dimension, and is injective (since a nonzero polynomial of degree $\leq m - 1$ has at most m - 1 zeros), so it is also surjective.

4A. For which positive integers n is it true that every invertible 2×2 matrix A with real entries can be expressed as the n-th power of another 2×2 matrix with real entries?

Solution: The answer is the odd positive integers. If n is even, then $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ cannot be the *n*-th power of another 2×2 matrix with real entries, because its determinant is not an *n*-th power of a real number.

Now assume n is odd. Thus every real number is an n-th power of a real number. The question of whether A is an n-th power is not affected by conjugation. Thus if A has distinct real eigenvalues, then without loss of generality we may assume that A is diagonal, in which we take the n-th roots of the diagonal entries to find another diagonal matrix B with $B^n = A$.

If A has equal real eigenvalues, then by conjugation, we may assume

$$A = \lambda \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$$

where $\lambda \in \mathbb{R}^*$ and $c \in \mathbb{R}$. Then $A = B^n$ where

$$B = \lambda^{1/n} \begin{pmatrix} 1 & c/n \\ 0 & 1 \end{pmatrix}.$$

Finally if the eigenvalues of A are not real, then the minimal polynomial of A is a quadratic polynomial f(x) with no real roots, so the \mathbb{R} -subalgebra $\mathbb{R}[A]$ of $M_2(\mathbb{R})$ generated by A is isomorphic to $\mathbb{R}[x]/(f(x)) \simeq \mathbb{C}$. Since every element of \mathbb{C} has an *n*-th root, the matrix A has an *n*-th root in $\mathbb{R}[A]$.

5A. Suppose $f \colon \mathbb{R} \to \mathbb{C}$ satisfies $f'(t) + 2itf(t) = e^{2it}$ and f(0) = 0. Compute $\lim_{t \to +\infty} e^{it^2} (f(t) - f(-t)).$

You may assume $\int_0^\infty e^{-t^2} dt = \sqrt{\pi}/2.$

Solution: Multiply the ODE by the integrating factor e^{it^2} , and integrate to get

$$e^{it^2}f(t) = \int_0^t e^{ix^2 + 2ix} dx$$

(The hypothesis f(0) = 0 implies that there is no constant of integration.) Substituting -t for t and subtracting, we get

$$e^{it^{2}}(f(t) - f(-t)) = \int_{-t}^{t} e^{ix^{2} + 2ix} dx$$
$$= e^{-i} \int_{-t}^{t} e^{i(x+1)^{2}} dx$$
$$= e^{-i} \int_{-t+1}^{t+1} e^{iz^{2}} dz.$$

Since e^{iz^2} is an even function, the limit as $t \to +\infty$ equals $2e^{-i}I$, where $I := \lim_{R \to +\infty} \int_0^R e^{iz^2} dz$ (assuming for now that the latter limit exists). Apply Cauchy's Theorem to the triangular contour from 0 to R to R + Ri and back to 0. The vertical part contributes

$$\int_{R}^{R+Ri} e^{iz^2} dz = \int_{0}^{R} e^{i(R+ti)^2} i dt,$$

whose absolute value is bounded by

$$\int_0^R |e^{i(R+ti)^2}| dt = \int_0^R e^{-2Rt} dt$$
$$= \frac{1}{2R} \int_0^{2R^2} e^{-u} du,$$

which goes to 0 as $R \to \infty$. Thus

$$I = \lim_{R \to \infty} \int_0^{R+Ri} e^{iz^2} dz \qquad \text{(if the limit exists)}$$
$$= \lim_{R \to \infty} \int_0^R e^{i(e^{i\pi/4}t)^2} e^{i\pi/4} dt \qquad \text{(if the limit exists)}$$
$$= e^{i\pi/4} \lim_{R \to \infty} \int_0^R e^{-t^2} dt \qquad \text{(if the limit exists)}$$
$$= e^{i\pi/4} \frac{\sqrt{\pi}}{2}.$$

Thus we now know that all the limits exist, and the answer is $2e^{-i}I = e^{-i+i\pi/4}\sqrt{\pi}$.

6A. For which pairs of integers (a, b) is the quotient ring $\mathbb{Z}[x]/(x^2 + ax + b)$ isomorphic (as a ring) to the direct product of rings $\mathbb{Z} \times \mathbb{Z}$?

Solution: Let $A = \mathbb{Z}[x]/(x^2 + ax + b)$ and $B = \mathbb{Z} \times \mathbb{Z}$. If $x^2 + ax + b$ is irreducible in the UFD $\mathbb{Z}[x]$, then $(x^2 + ax + b)$ is a prime ideal, so A is a domain. But B is not a domain. Thus we may assume $x^2 + ax + b = (x - c)(x - d)$ for some $c, d \in \mathbb{Z}$.

Suppose p is a prime integer dividing c - d. Then $A \simeq B$ implies $A/pA \simeq B/pB$; that is, $\mathbb{F}_p[x]/(x-\bar{c})^2 \simeq \mathbb{F}_p \times \mathbb{F}_p$, where $\bar{c} = \bar{d}$ is the image of c in \mathbb{F}_p . The ring on the left has a nonzero element with square 0, namely $x - \bar{c}$, whereas the right hand side has no such element. This contradiction shows that c - d is divisible by no primes, so $c - d = \pm 1$.

Conversely, if $c - d = \pm 1$, then the sum of the ideals (x - c) and (x - d) in $\mathbb{Z}[x]$ is the unit ideal, and their product equals their intersection (since they are generated by non-associate irreducible elements), so the Chinese Remainder Theorem gives

$$\frac{\mathbb{Z}[x]}{((x-c)(x-d))} \simeq \frac{\mathbb{Z}[x]}{(x-c)} \times \frac{\mathbb{Z}[x]}{(x-d)}$$

Each factor on the right is isomorphic to \mathbb{Z} , because each polynomial in $\mathbb{Z}[x]$ is uniquely expressible as q(x)(x-c) + r with $q(x) \in \mathbb{Z}[x]$ and $r \in \mathbb{Z}$. Thus $c - d = \pm 1$ implies $A \simeq B$.

In other words, the answer is the set of (a, b) such that $x^2 + ax + b$ has the form (x - n)(x - (n + 1)); that is,

$$\{(-(2n+1), n(n+1)) : n \in \mathbb{Z}\}.$$

7A. Evaluate $\int_0^\infty \frac{\sin x}{x} dx$.

Solution: For R > 1, let γ_1 be the straight line path from 1/R to R, let γ_2 be the straight line path from R to R + Ri, let γ_3 be the straight line path from R + Ri to -R + Ri, let γ_4 be the straight line path from -R + Ri to -R, let γ_5 be the straight line path from -R to

-1/R, and let γ_6 be the upper semicircle from -1/R to 1/R given by the parameterization $\gamma_6(t) = e^{it}$ for t running from π to 0. Let γ be the closed loop formed by concatenating these six paths. Cauchy's Theorem implies that $\int_{\gamma} \frac{e^{iz}}{z} dz = 0$.

We have

$$\left| \int_{\gamma_2} \frac{e^{iz}}{z} \, dz \right| \le \int_0^R \frac{e^{-t}}{R} \, dt = \frac{1 - e^{-R}}{R} \to 0$$

as $R \to \infty$. Similarly $\int_{\gamma_4} \frac{e^{iz}}{z} dz \to 0$, and

$$\left| \int_{\gamma_3} \frac{e^{iz}}{z} \, dz \right| \le \int_{-R}^{R} \frac{e^{-R}}{R} \, dt = 2e^{-R} \to 0.$$

On the other hand, $e^{iz}z$ differs from 1/z by a holomorphic function, and γ_6 is shrinking to a point, so

$$\lim_{R \to \infty} \int_{\gamma_6} \frac{e^{iz}}{z} dz = \lim_{R \to \infty} \int_{\gamma_6} \frac{1}{z} dz$$
$$= \lim_{R \to \infty} \int_{\pi}^0 \frac{1}{(1/R)e^{it}} (1/R)ie^{it} dt$$
$$= -\pi i.$$

Thus

$$\int_{\gamma_1} \frac{e^{iz}}{z} \, dz + \int_{\gamma_5} \frac{e^{iz}}{z} \, dz \to \pi i$$

as $R \to \infty$. Taking imaginary parts and using the fact that $(\sin z)/z$ is an even function, we find that

$$2\int_{1/R}^{R} \frac{\sin z}{z} \, dz \to \pi$$

as $R \to \infty$. Since $(\sin z)/z$ is holomorphic, it does not hurt to replace the lower limit 1/R by 0, so $\int_0^\infty \frac{\sin x}{x} dx = \pi/2$.

8A. Let V and W be finite-dimensional vector spaces over a field k. Let $f: V^n \to W$ be a function such that

(a) For each fixed $i \in \{1, \ldots, n\}$ and fixed $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \in V$, the map

$$V \to W$$

 $x \mapsto f(v_1, \dots, v_{i-1}, x, v_{i+1}, \dots, v_n)$

is a k-linear transformation; and

(b)
$$f(v_1, \ldots, v_n) = 0$$
 whenever $v_i = v_{i+1}$ for some $i \in \{1, \ldots, n-1\}$.

Prove that either dim $V \ge n$ or f is identically zero.

Solution: Fix *i*, and $v_1, ..., v_{i-1}, v_{i+2}, ..., v_n \in V$, and define $g(x, y) = f(v_1, ..., v_{i-1}, x, y, v_{i+2}, ..., v_n)$. Then

$$0 = g(x + y, x + y)$$

= $g(x + y, x) + g(x + y, y)$
= $g(x, x) + g(y, x) + g(x, y) + g(y, y)$
= $g(y, x) + g(x, y)$

so interchanging adjacent arguments changes the sign of the value of f.

Suppose $v_1, \ldots, v_n \in V$ are such that $v_i = v_j$ for some i < j. Then we can interchange arguments repeatedly to move v_j to the i + 1 position, possibly changing the sign of the value of $f(v_1, \ldots, v_n)$ as we go along. Since at the end the result is zero, we must have had $f(v_1, \ldots, v_n) = 0$ originally. Thus $f(v_1, \ldots, v_n) = 0$ whenever $v_i = v_j$ for some $i \neq j$.

We now solve the problem. If the conclusion fails, we have dim V < n and there exist $v_1, \ldots, v_n \in V$ with $f(v_1, \ldots, v_n) \neq 0$. Since dim V < n, the vectors v_1, \ldots, v_n must be linearly dependent. Thus for some i, we can write $v_i = \sum_{j \neq i} c_j v_j$ for some constants $c_j \in k$ for $j \neq i$. By linearity of f in the *i*-th argument,

$$f(v_1, \dots, v_n) = \sum_{j \neq i} c_j f(v_1, \dots, v_{i-1}, v_j, v_{i+1}, \dots, v_n)$$
$$= \sum_{j \neq i} c_j \cdot 0$$

by the previous paragraph, since in each term some v_j appears twice as an argument. Thus $f(v_1, \ldots, v_n) = 0$, a contradiction.

9A. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable function, and let L be a nonnegative real number. Prove that the following are equivalent:

(i) For every $x, y \in \mathbb{R}^n$,

$$(f(x) - f(y)).(x - y) \le L|x - y|^2$$

(ii) For every $x, v \in \mathbb{R}^n$,

$$Df(x)v.v \le L|v|^2$$
,

where Df(x) is the derivative of f at x, and . denotes the standard inner product of vectors in \mathbb{R}^n .

Solution: (i) \implies (ii): Let x = y + tv. Then (i) says

$$t(f(y+tv) - f(y)).v \le Lt^2|v|^2.$$

Divide by t^2 and take the limit as $t \to 0$ to deduce $Df(y)v.v \le L|v|^2$.

(ii)
$$\Longrightarrow$$
 (i): Let $\phi(t) = f(y + t(x - y))$ for $t \in \mathbb{R}$. Then

$$f(x) - f(y) = \phi(1) - \phi(0)$$

$$= \int_0^1 \phi'(t) dt$$

$$= \int_0^1 Df(y + t(x - y))(x - y) dt \qquad \text{(by the Chain Rule)}.$$

 \mathbf{SO}

$$(f(x) - f(y)).(x - y) = \int_0^1 Df(y + t(x - y))(x - y).(x - y) dt$$

$$\leq \int_0^1 L|x - y|^2 dt \qquad (by (ii))$$

$$= L|x - y|^2.$$

1B. Let F be a field (of arbitrary characteristic). Suppose g is a nonnegative integer, and polynomials $a(x), b(x) \in F[x]$ satisfy deg $a(x) \leq g$ and deg b(x) = 2g + 1. Prove that the polynomial $y^2 + a(x)y + b(x)$ is irreducible over F(x).

Solution: If instead it factors in F(x)[y] into polynomials of y-degree ≥ 1 , then by Gauss's Lemma, it factors in F[x][y] = F[x, y] into polynomials of y-degree ≥ 1 . Thus we would have

$$y^{2} + a(x)y + b(x) = (y + p(x))(y + q(x))$$

for some $p(x), q(x) \in F[x]$. Since p(x)q(x) = b(x) has odd degree, p(x) and q(x) have distinct degrees, so

$$\deg(p(x) + q(x)) = \max(\deg p(x), \deg q(x)) \ge (\deg p(x) + \deg q(x))/2 = (2g+1)/2 > g.$$

This contradictions $\deg a(x) = g$.

2B. Find the maximum possible value of |f'(1)| given that f is holomorphic on an open neighborhood of $\{z \in \mathbb{C} : |z| \leq 2\}$ and satisfies $|f(z)| \leq 1$ when |z| = 2.

Solution: We will use a fractional linear transformation to change the problem to one where the derivative is evaluated at the center of a disk.

The function $z \mapsto \frac{2}{z} \left(\frac{z-1}{\overline{z}-1}\right)$ on |z| = 2 has absolute value 1, and it extends to a fractional linear transformation $g(z) = 2 \left(\frac{z-1}{4-z}\right)$ Since it also maps z = 1 to the interior of the unit disk, it must map the region $|z| \leq 2$ bijectively onto the unit disk. We calculate |g'(1)| = 2/3.

Now, for any other f mapping the circle |z| = 2 into $|z| \le 1$, the composition $h := f \circ g^{-1}$ is holomorphic on a neighborhood of $|z| \le 1$, and maps |z| = 1 into $|z| \le 1$. Taking absolute values in

$$h'(0) = \frac{1}{2\pi i} \int_{|z|=1} \frac{h(z)}{z^2} dz$$

gives $|h'(0)| \leq 1$. Since $g^{-1}(0) = 1$, the Chain Rule gives $h'(0) = f'(1)g'(1)^{-1}$. Thus $|f'(1)| = |h'(0)||g'(1)| \leq |g'(1)| = 2/3$. Thus 2/3 is the maximum possible value of |f'(1)|.

3B. Let A be a $d \times d$ matrix with complex entries. Assume that every eigenvalue of A has absolute value 1. Prove that there exists a constant $c \in \mathbb{R}$ independent of n such that

$$||A^n x|| \le cn^{d-1} ||x||$$

for all $n \ge 1$ and $x \in \mathbb{C}^d$. Here $||x|| := (|x_1|^2 + \dots + |x_d|^2)^{1/2}$ for all $(x_1, \dots, x_d) \in \mathbb{C}^d$.

Solution: We may use $|x|_{\infty} := \max\{|x_1|, \ldots, |x_n|\}$ instead of ||x||, since different norms on a finite-dimensional vector space are bounded by positive constants times each other. Then it suffices to show that the entries of A^n are $O(n^{d-1})$ as $n \to \infty$. This property is unchanged if we conjugate all the A^n by a fixed invertible matrix. Thus we may assume that A is in Jordan canonical form. Thus A = D + N where D is diagonal, N is nilpotent, and D and N commute. By the Cayley-Hamilton theorem, $N^d = 0$. Thus the binomial theorem gives

$$A^{n} = D^{n} + \binom{n}{1}D^{n-1}N + \binom{n}{2}D^{n-2}N^{2} + \dots + \binom{n}{d-1}D^{n-d+1}N^{d-1}.$$

The diagonal entries of D are the eigenvalues of A, which have absolute value 1, so the entries of D^m are O(1) for any m. The entries of N, N^2, \ldots, N^{d-1} do not depend on n. The binomial coefficients are $O(n^{d-1})$. Thus the entries of A^n are $O(n^{d-1})$, as desired.

4B. Let a_1, \ldots, a_n be positive real numbers. Let Δ be the set of points $\mathbf{x} \in \mathbb{R}^n$ satisfying the conditions

$$\sum_{i=1}^{n} a_i x_i = 1, \quad x_i > 0 \text{ for all } i.$$

Prove that the function $\log(\prod_{i=1}^{n} x_i)$ has a unique maximum on Δ and find the point where it occurs.

Solution: The given function is continuous and approaches $-\infty$ at every point on the boundary of Δ (since each x_i is bounded above, and at least one of them approaches zero at every point on the boundary). Hence a maximum exists. By Lagrange multipliers, at a maximum we must have $d \log(\prod_{i=1}^{n} x_i) = \lambda d \sum_{i=1}^{n} a_i x_i$ for some λ , or $\sum_i dx_i/x_i = \lambda \sum_i a_i dx_i$. Hence $(x_1, \ldots, x_n) = (1/\lambda)(1/a_1, \ldots, 1/a_n)$. Combining this with the equation $\sum_i a_i x_i = 1$ shows that $\lambda = n$ and $(x_1, \ldots, x_n) = (1/n)(1/a_1, \ldots, 1/a_n)$. This locates the maximum and proves that it is unique.

Alternative solution: The arithmetic-mean–geometric-mean inequality gives

$$\frac{\sum_{i=1}^{n} a_i x_i}{n} \ge \left(\prod_{i=1}^{n} (a_i x_i)\right)^{1/n},$$

with equality if and only if $a_1x_1 = \cdots = a_nx_n$. On Δ , the left hand side is constant, so we get an upper bound on $\prod_{i=1}^n x_i$, attained exactly when $a_1x_1 = \cdots = a_nx_n$. It follows that there is a unique maximum where $a_ix_i = 1/n$ for all *i*; that is, $x_i = 1/(na_i)$ for all *i*.

5B. Let n_1, \ldots, n_r be integers ≥ 2 . Prove that there is a finite group G containing elements g_1, \ldots, g_r such that g_i has exact order n_i for each i, and $g_i g_j \neq g_j g_i$ for $i \neq j$.

Solution: Let T_1, \ldots, T_r be disjoint sets with $\#T_i = n_i - 1$. Let S be the union of the T_i together with one more element x outside all the T_i . Let G be the set of permutations of S.

Choose $g_i \in G$ such that g_i acts as an n_i -cycle on $T_i \cup \{x\}$, and acts as the identity on the complement. Then g_i has order n_i . If $i \neq j$, then $(g_i g_j)(x) = g_i(g_j(x)) \in g_i(T_j) = T_j$, and similarly $(g_j g_i)(x) \in T_i$, so $g_i g_j \neq g_j g_i$.

6B. Let $(u_n(x,y))_{n\geq 1}$ be a sequence of functions that are defined and harmonic for (x,y) in an open neighborhood of the upper half plane $\mathbb{R} \times \mathbb{R}_{\geq 0}$. Suppose that $\frac{\partial u_n}{\partial y}(x,0) = 0$ for all $x \in \mathbb{R}$, and $u_n(x,0)$ converges to 0 as $n \to \infty$ uniformly for $x \in \mathbb{R}$. Must $u_n(x,y) \to 0$ as $n \to \infty$ for every $(x,y) \in \mathbb{R} \times \mathbb{R}_{>0}$?

Solution: No. Let $u_n = \cosh(ny) \cos(nx)/n$. Since u_n is the real part of the holomorphic function $\cos(nz)/n$, it is harmonic on the entire plane. Then $\frac{\partial u_n}{\partial y}(x,0) = -\sinh(0)\cos(nx) = 0$, and $u_n(x,0) = \cos(nx)/n \to 0$ as $n \to \infty$ uniformly for $x \in R$. But $u_n(0,1) = \cosh(n)/n$ does not tend to 0 as $n \to \infty$.

7B. Let A and B be $n \times n$ matrices with complex entries, such that AB - BA is a linear combination of A and B. Prove that there exists a nonzero vector v that is an eigenvector of both A and B.

Solution: Let $AB - BA = C = \alpha A + \beta B$. If $\alpha = \beta = 0$, then A and B commute. By a theorem of linear algebra, commuting complex matrices have a common eigenvector. Otherwise, assume without loss of generality that $\beta \neq 0$. Then B is a linear combination of A and C, so it suffices to prove that A and C have a common eigenvector. Note that $AC - CA = \beta C$. Since A has finitely many eigenvalues, it must have one, call it λ , such that $\lambda + \beta$ is not an eigenvalue of A. Let v be a nonzero vector with $Av = \lambda v$. Then $ACv = CAv + \beta Cv = (\lambda + \beta)Cv$, so Cv = 0. Hence v is a common eigenvector of A and C.

8B. For each real number x, compute

$$\lim_{n \to \infty} n\left(\left(1 + \frac{x}{n}\right)^n - e^x\right).$$

Solution: We have

$$n\left(\left(1+\frac{x}{n}\right)^n - e^x\right) = n\left(e^{n\log(1+x/n)} - e^x\right)$$
$$= ne^x\left(e^{n\log(1+x/n)-x} - 1\right)$$

Taylor's Theorem with Remainder gives

$$\log\left(1+\frac{x}{n}\right) = \frac{x}{n} - \frac{1}{2}\left(\frac{x^2}{n^2}\right) + O\left(\frac{1}{n^3}\right)$$

where the constant in the big-O depends on x, but not on n. Substituting, we get

$$ne^x \left(e^{-\frac{x^2}{2n} + O\left(\frac{1}{n^2}\right)} - 1 \right).$$

Since $e^y = 1 + y + O(y^2)$ as $y \to 0$, this becomes

$$ne^{x}\left(-\frac{x^{2}}{2n}+O\left(\frac{1}{n^{2}}\right)\right)=-\frac{1}{2}x^{2}e^{x}+O\left(\frac{1}{n}\right),$$

so the limit is $-\frac{1}{2}x^2e^x$.

9B. Let S_4 be the group of permutations of $\{1, 2, 3, 4\}$. Determine the order of the automorphism group Aut (S_4) . Justify your answer.

Solution: The center of S_4 is trivial, so S_4 acts faithfully on itself by inner automorphisms. We will then have $|\operatorname{Aut}(S_4)| = |S_4| = 24$, if we can show that every automorphism of S_4 is inner.

Let $\sigma \in \operatorname{Aut}(S_4)$. The group S_4 has exactly four subgroups H_1 , H_2 , H_3 , H_4 of order 3, where H_i contains the identity and the two 3-cycles that fix *i*. The automorphism σ must permute these subgroups. Since inner automorphisms permute them arbitrarily, we can assume after multiplying σ by an inner automorphism that σ fixes each H_i . The set of transpositions is characterized as the unique conjugacy class consisting of 6 elements of order 2, so σ stabilizes it. Among the transpositions, each one $\tau = (i \ j)$ is characterized by the property that τ and H_k generate S_4 if and only if $k \in \{i, j\}$. Therefore σ fixes every transposition. Since the transpositions generate S_4 , σ must be the identity.