
Spring 2004 Prelim Solutions

1A. Consider a sequence of functions fn : [a, b] → R with the property that for each x ∈ [a, b]
there is an open interval Ix containing x such that (fn)n≥1 converges uniformly in Ix ∩ [a, b].
Show that (fn)n≥1 converges uniformly in [a, b].

Solution: For each x ∈ [a, b], the sequence (fn) converges uniformly on Ix, and in particular
converges pointwise at x. Let f : [a, b] → R be the pointwise limit of (fn). The compact set
[a, b] is covered by the collection of open intervals Ix, so there is a finite subcovering, say
[a, b] ⊂

⋃m
k=1 Ixk

. Given ε > 0, there exists Nk such that for n ≥ Nk, the difference |fn − f |
is bounded by ε on Ixk

. Let N := max(N1, . . . , Nm). Then for n ≥ N , the difference |fn− f |
is bounded by ε on all of [a, b]. Hence by definition, (fn) converges to f uniformly.

2A. Find a countable abelian group whose endomorphism ring has the same cardinality as
the set of real numbers. Justify your answer.

Solution: Let G be a vector space of dimension ℵ0 over F2. Then G is countable, since it
is a countable union of finite subspaces. Let v1, v2, . . . be a basis. For each S ⊆ {1, 2, 3, . . . },
there is an endomorphism of G mapping each vi to vi or 0 according to whether i ∈ S.
Different subsets S give different endomorphisms, so # End G ≥ 2ℵ0 . On the other hand,

# End G ≤ (#G)#G = ℵℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 .

Thus # End G = 2ℵ0 = #R.

3A. Let a1, . . . , an, b1, . . . , bm be distinct complex numbers, let r1, . . . , rn be nonnegative
integers, and let c1, . . . , cm be complex numbers. Prove that if m ≤ r1 + · · · + rn + 1, then
there exists a rational function F (z) ∈ C(z) satisfying all of the following:

1. F (z) is holomorphic at ∞ and everywhere in C except possibly at a1, . . . , an.
2. ordz=ai

F (z) ≥ −ri

3. F (bj) = cj for j = 1, . . . ,m.

Solution: Write F (z) = G(z)/
∏n

i=1(z−ai)
ri , where G(z) ∈ C(z) is to be determined. The

condition that F be holomorphic on C except for poles of order at most ri at ai corresponds to
the condition that G(z) be holomorphic on C, hence a polynomial. The condition that F (z)
be holomorphic at ∞ corresponds to the condition deg G ≤ r1 + · · ·+ rn. The m conditions
F (bj) = cj correspond to conditions G(bj) = c′j where c′j = cj

∏n
i=1(bj − ai)

ri . These m
conditions can be satisfied by a polynomial of degree m − 1 (which is ≤ r1 + · · · + rn), by
the Lagrange interpolation formula. Alternatively,

{ polynomials of degree ≤ m− 1 } → Cm

G(z) 7→ (G(b1), . . . , G(bm))

is a linear map between C-vector spaces of the same finite dimension, and is injective (since
a nonzero polynomial of degree ≤ m− 1 has at most m− 1 zeros), so it is also surjective.

4A. For which positive integers n is it true that every invertible 2 × 2 matrix A with real
entries can be expressed as the n-th power of another 2× 2 matrix with real entries?
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Solution: The answer is the odd positive integers. If n is even, then

(
−1 0
0 1

)
cannot be

the n-th power of another 2× 2 matrix with real entries, because its determinant is not an
n-th power of a real number.

Now assume n is odd. Thus every real number is an n-th power of a real number. The
question of whether A is an n-th power is not affected by conjugation. Thus if A has distinct
real eigenvalues, then without loss of generality we may assume that A is diagonal, in which
we take the n-th roots of the diagonal entries to find another diagonal matrix B with Bn = A.

If A has equal real eigenvalues, then by conjugation, we may assume

A = λ

(
1 c
0 1

)
where λ ∈ R∗ and c ∈ R. Then A = Bn where

B = λ1/n

(
1 c/n
0 1

)
.

Finally if the eigenvalues of A are not real, then the minimal polynomial of A is a quadratic
polynomial f(x) with no real roots, so the R-subalgebra R[A] of M2(R) generated by A is
isomorphic to R[x]/(f(x)) ' C. Since every element of C has an n-th root, the matrix A
has an n-th root in R[A].

5A. Suppose f : R → C satisfies f ′(t) + 2itf(t) = e2it and f(0) = 0. Compute

lim
t→+∞

eit2(f(t)− f(−t)).

You may assume
∫∞

0
e−t2 dt =

√
π/2.

Solution: Multiply the ODE by the integrating factor eit2 , and integrate to get

eit2f(t) =

∫ t

0

eix2+2ix dx

(The hypothesis f(0) = 0 implies that there is no constant of integration.) Substituting −t
for t and subtracting, we get

eit2(f(t)− f(−t)) =

∫ t

−t

eix2+2ix dx

= e−i

∫ t

−t

ei(x+1)2 dx

= e−i

∫ t+1

−t+1

eiz2

dz.

Since eiz2
is an even function, the limit as t → +∞ equals 2e−iI, where I := limR→+∞

∫ R

0
eiz2

dz
(assuming for now that the latter limit exists). Apply Cauchy’s Theorem to the triangular
contour from 0 to R to R + Ri and back to 0. The vertical part contributes∫ R+Ri

R

eiz2

dz =

∫ R

0

ei(R+ti)2 i dt,
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whose absolute value is bounded by∫ R

0

|ei(R+ti)2| dt =

∫ R

0

e−2Rt dt

=
1

2R

∫ 2R2

0

e−u du,

which goes to 0 as R →∞. Thus

I = lim
R→∞

∫ R+Ri

0

eiz2

dz (if the limit exists)

= lim
R→∞

∫ R

0

ei(eiπ/4t)2eiπ/4 dt (if the limit exists)

= eiπ/4 lim
R→∞

∫ R

0

e−t2 dt (if the limit exists)

= eiπ/4

√
π

2
.

Thus we now know that all the limits exist, and the answer is 2e−iI = e−i+iπ/4
√

π.

6A. For which pairs of integers (a, b) is the quotient ring Z[x]/(x2 + ax + b) isomorphic (as
a ring) to the direct product of rings Z× Z?

Solution: Let A = Z[x]/(x2 + ax + b) and B = Z× Z. If x2 + ax + b is irreducible in the
UFD Z[x], then (x2 + ax + b) is a prime ideal, so A is a domain. But B is not a domain.
Thus we may assume x2 + ax + b = (x− c)(x− d) for some c, d ∈ Z.

Suppose p is a prime integer dividing c − d. Then A ' B implies A/pA ' B/pB; that
is, Fp[x]/(x − c̄)2 ' Fp × Fp, where c̄ = d̄ is the image of c in Fp. The ring on the left has
a nonzero element with square 0, namely x − c̄, whereas the right hand side has no such
element. This contradiction shows that c− d is divisible by no primes, so c− d = ±1.

Conversely, if c−d = ±1, then the sum of the ideals (x− c) and (x−d) in Z[x] is the unit
ideal, and their product equals their intersection (since they are generated by non-associate
irreducible elements), so the Chinese Remainder Theorem gives

Z[x]

((x− c)(x− d))
' Z[x]

(x− c)
× Z[x]

(x− d)
.

Each factor on the right is isomorphic to Z, because each polynomial in Z[x] is uniquely
expressible as q(x)(x− c) + r with q(x) ∈ Z[x] and r ∈ Z. Thus c− d = ±1 implies A ' B.

In other words, the answer is the set of (a, b) such that x2 + ax + b has the form (x −
n)(x− (n + 1)); that is,

{ (−(2n + 1), n(n + 1)) : n ∈ Z }.

7A. Evaluate

∫ ∞

0

sin x

x
dx.

Solution: For R > 1, let γ1 be the straight line path from 1/R to R, let γ2 be the straight
line path from R to R + Ri, let γ3 be the straight line path from R + Ri to −R + Ri, let γ4

be the straight line path from −R + Ri to −R, let γ5 be the straight line path from −R to
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−1/R, and let γ6 be the upper semicircle from −1/R to 1/R given by the parameterization
γ6(t) = eit for t running from π to 0. Let γ be the closed loop formed by concatenating these

six paths. Cauchy’s Theorem implies that
∫

γ
eiz

z
dz = 0.

We have ∣∣∣∣∫
γ2

eiz

z
dz

∣∣∣∣ ≤ ∫ R

0

e−t

R
dt =

1− e−R

R
→ 0

as R →∞. Similarly
∫

γ4

eiz

z
dz → 0, and∣∣∣∣∫
γ3

eiz

z
dz

∣∣∣∣ ≤ ∫ R

−R

e−R

R
dt = 2e−R → 0.

On the other hand, eizz differs from 1/z by a holomorphic function, and γ6 is shrinking to
a point, so

lim
R→∞

∫
γ6

eiz

z
dz = lim

R→∞

∫
γ6

1

z
dz

= lim
R→∞

∫ 0

π

1

(1/R)eit
(1/R)ieit dt

= −πi.

Thus ∫
γ1

eiz

z
dz +

∫
γ5

eiz

z
dz → πi

as R →∞. Taking imaginary parts and using the fact that (sin z)/z is an even function, we
find that

2

∫ R

1/R

sin z

z
dz → π

as R → ∞. Since (sin z)/z is holomorphic, it does not hurt to replace the lower limit 1/R
by 0, so

∫∞
0

sin x
x

dx = π/2.

8A. Let V and W be finite-dimensional vector spaces over a field k. Let f : V n → W be a
function such that

(a) For each fixed i ∈ {1, . . . , n} and fixed v1, . . . , vi−1, vi+1, . . . , vn ∈ V , the map

V → W

x 7→ f(v1, . . . , vi−1, x, vi+1, . . . , vn)

is a k-linear transformation; and
(b) f(v1, . . . , vn) = 0 whenever vi = vi+1 for some i ∈ {1, . . . , n− 1}.

Prove that either dim V ≥ n or f is identically zero.
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Solution: Fix i, and v1, . . . , vi−1, vi+2, . . . , vn ∈ V , and define g(x, y) = f(v1, . . . , vi−1, x, y, vi+2, . . . , vn).
Then

0 = g(x + y, x + y)

= g(x + y, x) + g(x + y, y)

= g(x, x) + g(y, x) + g(x, y) + g(y, y)

= g(y, x) + g(x, y)

so interchanging adjacent arguments changes the sign of the value of f .
Suppose v1, . . . , vn ∈ V are such that vi = vj for some i < j. Then we can interchange

arguments repeatedly to move vj to the i + 1 position, possibly changing the sign of the
value of f(v1, . . . , vn) as we go along. Since at the end the result is zero, we must have had
f(v1, . . . , vn) = 0 originally. Thus f(v1, . . . , vn) = 0 whenever vi = vj for some i 6= j.

We now solve the problem. If the conclusion fails, we have dim V < n and there exist
v1, . . . , vn ∈ V with f(v1, . . . , vn) 6= 0. Since dim V < n, the vectors v1, . . . , vn must be
linearly dependent. Thus for some i, we can write vi =

∑
j 6=i cjvj for some constants cj ∈ k

for j 6= i. By linearity of f in the i-th argument,

f(v1, . . . , vn) =
∑
j 6=i

cjf(v1, . . . , vi−1, vj, vi+1, . . . , vn)

=
∑
j 6=i

cj · 0

by the previous paragraph, since in each term some vj appears twice as an argument. Thus
f(v1, . . . , vn) = 0, a contradiction.

9A. Let f : Rn → Rn be a differentiable function, and let L be a nonnegative real number.
Prove that the following are equivalent:

(i) For every x, y ∈ Rn,

(f(x)− f(y)).(x− y) ≤ L|x− y|2

(ii) For every x, v ∈ Rn,

Df(x)v.v ≤ L|v|2,

where Df(x) is the derivative of f at x, and . denotes the standard inner product of vectors
in Rn.

Solution:
(i) =⇒ (ii): Let x = y + tv. Then (i) says

t(f(y + tv)− f(y)).v ≤ Lt2|v|2.

Divide by t2 and take the limit as t → 0 to deduce Df(y)v.v ≤ L|v|2.
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(ii) =⇒ (i): Let φ(t) = f(y + t(x− y)) for t ∈ R. Then

f(x)− f(y) = φ(1)− φ(0)

=

∫ 1

0

φ′(t) dt

=

∫ 1

0

Df(y + t(x− y))(x− y) dt (by the Chain Rule).

so

(f(x)− f(y)).(x− y) =

∫ 1

0

Df(y + t(x− y))(x− y).(x− y) dt

≤
∫ 1

0

L|x− y|2 dt (by (ii))

= L|x− y|2.

1B. Let F be a field (of arbitrary characteristic). Suppose g is a nonnegative integer, and
polynomials a(x), b(x) ∈ F [x] satisfy deg a(x) ≤ g and deg b(x) = 2g + 1. Prove that the
polynomial y2 + a(x)y + b(x) is irreducible over F (x).

Solution: If instead it factors in F (x)[y] into polynomials of y-degree ≥ 1, then by Gauss’s
Lemma, it factors in F [x][y] = F [x, y] into polynomials of y-degree ≥ 1. Thus we would
have

y2 + a(x)y + b(x) = (y + p(x))(y + q(x))

for some p(x), q(x) ∈ F [x]. Since p(x)q(x) = b(x) has odd degree, p(x) and q(x) have distinct
degrees, so

deg(p(x) + q(x)) = max(deg p(x), deg q(x)) ≥ (deg p(x) + deg q(x))/2 = (2g + 1)/2 > g.

This contradictions deg a(x) = g.

2B. Find the maximum possible value of |f ′(1)| given that f is holomorphic on an open
neighborhood of {z ∈ C : |z| ≤ 2} and satisfies |f(z)| ≤ 1 when |z| = 2.

Solution: We will use a fractional linear transformation to change the problem to one
where the derivative is evaluated at the center of a disk.

The function z 7→ 2
z

(
z−1
z̄−1

)
on |z| = 2 has absolute value 1, and it extends to a fractional

linear transformation g(z) = 2
(

z−1
4−z

)
Since it also maps z = 1 to the interior of the unit disk,

it must map the region |z| ≤ 2 bijectively onto the unit disk. We calculate |g′(1)| = 2/3.
Now, for any other f mapping the circle |z| = 2 into |z| ≤ 1, the composition h := f ◦ g−1

is holomorphic on a neighborhood of |z| ≤ 1, and maps |z| = 1 into |z| ≤ 1. Taking absolute
values in

h′(0) =
1

2πi

∫
|z|=1

h(z)

z2
dz

gives |h′(0)| ≤ 1. Since g−1(0) = 1, the Chain Rule gives h′(0) = f ′(1)g′(1)−1. Thus
|f ′(1)| = |h′(0)||g′(1)| ≤ |g′(1)| = 2/3. Thus 2/3 is the maximum possible value of |f ′(1)|.
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3B. Let A be a d × d matrix with complex entries. Assume that every eigenvalue of A has
absolute value 1. Prove that there exists a constant c ∈ R independent of n such that

‖Anx‖ ≤ cnd−1‖x‖
for all n ≥ 1 and x ∈ Cd. Here ‖x‖ := (|x1|2 + · · ·+ |xd|2)1/2 for all (x1, . . . , xd) ∈ Cd.

Solution: We may use |x|∞ := max{|x1|, . . . , |xn|} instead of ‖x‖, since different norms on
a finite-dimensional vector space are bounded by positive constants times each other. Then
it suffices to show that the entries of An are O(nd−1) as n →∞. This property is unchanged
if we conjugate all the An by a fixed invertible matrix. Thus we may assume that A is in
Jordan canonical form. Thus A = D + N where D is diagonal, N is nilpotent, and D and
N commute. By the Cayley-Hamilton theorem, Nd = 0. Thus the binomial theorem gives

An = Dn +

(
n

1

)
Dn−1N +

(
n

2

)
Dn−2N2 + · · ·+

(
n

d− 1

)
Dn−d+1Nd−1.

The diagonal entries of D are the eigenvalues of A, which have absolute value 1, so the
entries of Dm are O(1) for any m. The entries of N , N2, . . . , Nd−1 do not depend on n. The
binomial coefficients are O(nd−1). Thus the entries of An are O(nd−1), as desired.

4B. Let a1, . . . , an be positive real numbers. Let ∆ be the set of points x ∈ Rn satisfying the
conditions

n∑
i=1

aixi = 1, xi > 0 for all i.

Prove that the function log(
∏n

i=1 xi) has a unique maximum on ∆ and find the point where
it occurs.

Solution: The given function is continuous and approaches −∞ at every point on the
boundary of ∆ (since each xi is bounded above, and at least one of them approaches zero
at every point on the boundary). Hence a maximum exists. By Lagrange multipliers,
at a maximum we must have d log(

∏n
i=1 xi) = λ d

∑n
i=1 aixi for some λ, or

∑
i dxi/xi =

λ
∑

i ai dxi. Hence (x1, . . . , xn) = (1/λ)(1/a1, . . . , 1/an). Combining this with the equation∑
i aixi = 1 shows that λ = n and (x1, . . . , xn) = (1/n)(1/a1, . . . , 1/an). This locates the

maximum and proves that it is unique.

Alternative solution: The arithmetic-mean–geometric-mean inequality gives∑n
i=1 aixi

n
≥

(
n∏

i=1

(aixi)

)1/n

,

with equality if and only if a1x1 = · · · = anxn. On ∆, the left hand side is constant, so we
get an upper bound on

∏n
i=1 xi, attained exactly when a1x1 = · · · = anxn. It follows that

there is a unique maximum where aixi = 1/n for all i; that is, xi = 1/(nai) for all i.

5B. Let n1, . . . , nr be integers ≥ 2. Prove that there is a finite group G containing elements
g1, . . . , gr such that gi has exact order ni for each i, and gigj 6= gjgi for i 6= j.

Solution: Let T1, . . . , Tr be disjoint sets with #Ti = ni − 1. Let S be the union of the Ti

together with one more element x outside all the Ti. Let G be the set of permutations of S.
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Choose gi ∈ G such that gi acts as an ni-cycle on Ti ∪ {x}, and acts as the identity on the
complement. Then gi has order ni. If i 6= j, then (gigj)(x) = gi(gj(x)) ∈ gi(Tj) = Tj, and
similarly (gjgi)(x) ∈ Ti, so gigj 6= gjgi.

6B. Let (un(x, y))n≥1 be a sequence of functions that are defined and harmonic for (x, y) in
an open neighborhood of the upper half plane R × R≥0. Suppose that ∂un

∂y
(x, 0) = 0 for all

x ∈ R, and un(x, 0) converges to 0 as n → ∞ uniformly for x ∈ R. Must un(x, y) → 0 as
n →∞ for every (x, y) ∈ R× R>0?

Solution: No. Let un = cosh(ny) cos(nx)/n. Since un is the real part of the holomorphic
function cos(nz)/n, it is harmonic on the entire plane. Then ∂un

∂y
(x, 0) = − sinh(0) cos(nx) =

0, and un(x, 0) = cos(nx)/n → 0 as n →∞ uniformly for x ∈ R. But un(0, 1) = cosh(n)/n
does not tend to 0 as n →∞.

7B. Let A and B be n × n matrices with complex entries, such that AB − BA is a linear
combination of A and B. Prove that there exists a nonzero vector v that is an eigenvector
of both A and B.

Solution: Let AB − BA = C = αA + βB. If α = β = 0, then A and B commute.
By a theorem of linear algebra, commuting complex matrices have a common eigenvector.
Otherwise, assume without loss of generality that β 6= 0. Then B is a linear combination
of A and C, so it suffices to prove that A and C have a common eigenvector. Note that
AC − CA = βC. Since A has finitely many eigenvalues, it must have one, call it λ, such
that λ + β is not an eigenvalue of A. Let v be a nonzero vector with Av = λv. Then
ACv = CAv + βCv = (λ + β)Cv, so Cv = 0. Hence v is a common eigenvector of A and C.

8B. For each real number x, compute

lim
n→∞

n
((

1 +
x

n

)n

− ex
)

.

Solution: We have

n
((

1 +
x

n

)n

− ex
)

= n
(
en log(1+x/n) − ex

)
= nex

(
en log(1+x/n)−x − 1

)
.

Taylor’s Theorem with Remainder gives

log
(
1 +

x

n

)
=

x

n
− 1

2

(
x2

n2

)
+ O

(
1

n3

)
where the constant in the big-O depends on x, but not on n. Substituting, we get

nex

(
e−

x2

2n
+O( 1

n2 ) − 1

)
.

Since ey = 1 + y + O(y2) as y → 0, this becomes

nex

(
−x2

2n
+ O

(
1

n2

))
= −1

2
x2ex + O

(
1

n

)
,

so the limit is −1
2
x2ex.
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9B. Let S4 be the group of permutations of {1, 2, 3, 4}. Determine the order of the automor-
phism group Aut(S4). Justify your answer.

Solution: The center of S4 is trivial, so S4 acts faithfully on itself by inner automorphisms.
We will then have |Aut(S4)| = |S4| = 24, if we can show that every automorphism of S4 is
inner.

Let σ ∈ Aut(S4). The group S4 has exactly four subgroups H1, H2, H3, H4 of order
3, where Hi contains the identity and the two 3-cycles that fix i. The automorphism σ
must permute these subgroups. Since inner automorphisms permute them arbitrarily, we
can assume after multiplying σ by an inner automorphism that σ fixes each Hi. The set
of transpositions is characterized as the unique conjugacy class consisting of 6 elements of
order 2, so σ stabilizes it. Among the transpositions, each one τ = (i j) is characterized by
the property that τ and Hk generate S4 if and only if k ∈ {i, j}. Therefore σ fixes every
transposition. Since the transpositions generate S4, σ must be the identity.

9


