SPRING 2005 PRELIMINARY EXAMINATION SOLUTIONS

1A. (a) Let $(a_n)_1^{\infty}$ be a sequence in \mathbb{R} such that

$$\sum_{n=1}^{\infty} |a_{n+1} - a_n| < \infty.$$

Prove that $(a_n)_1^{\infty}$ is a Cauchy sequence.

(b) Is the converse true? Give a proof or a counterexample.

2A. Prove or disprove the statement: Every function $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y) for all x and y is continuous.

3A. Prove that there is no holomorphic bijection from the punctured disk 0 < |z| < 1 in \mathbb{C} onto the annulus r < |z| < R, where $0 < r < R < \infty$.

4A. Suppose A and B are commuting $n \times n$ matrices over \mathbb{R} . Suppose A and B are each diagonalizable over \mathbb{R} . Show that AB is diagonalizable over \mathbb{R} .

5A. Let I be an open interval and let $f: I \to \mathbb{R}$ have continuous k-th derivatives everywhere on I for all $k \leq n-1$. Let $a \in I$ be such that $f^{(k)}(a) = 0$ for $1 \leq k \leq n-1$, and assume that $f^{(n)}(a)$ is defined and $f^{(n)}(a) > 0$. Prove that if n is even, then f has a local minimum at a, and if n is odd, then f has no local extremum at a.

6A. For every positive integer n, define $[n]_q = q^{n-1} + q^{n-2} + \cdots + q + 1$. Prove that $[1]_q[2]_q \cdots [r]_q$ divides $[k+1]_q[k+2]_q \cdots [k+r]_q$ in the polynomial ring $\mathbb{Z}[q]$, for all positive integers k and r.

7A. Let U be a connected open subset of \mathbb{C} , and let f(z) be a meromorphic function on U having at least one pole. For each $c \in U$ that is not a pole of f, let R(c) be the radius of convergence of the Taylor series of f centered at c. Prove that R(c) extends to a continuous function defined on all of U.

8A. Let C and D be two $n \times n$ positive definite Hermitian matrices over \mathbb{C} and let A = CD. Prove that all eigenvalues of A are positive real numbers.

9A. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be an infinitely differentiable function that is zero outside some bounded subset of \mathbb{R}^2 . Prove that

$$\lim_{\epsilon \to 0} \iint_{x^2 + y^2 \ge \epsilon^2} \frac{f(x, y)}{(x + iy)^3} \, dx \, dy$$

exists.

1B. Let G be a finite group. Suppose ab = ba holds whenever $a, b \in G$ have prime power order. Prove that G is abelian.

2B. Prove that, for any $\varepsilon > 0$, the function $f(z) = \sin z + \frac{1}{z+i}$ has infinitely many zeros in the strip $|\operatorname{Im} z| < \varepsilon$.

3B. Let $M_n(F)$ be the ring of $n \times n$ matrices over a field F. Prove that for every $A \in M_n(F)$ there exists $X \in M_n(F)$ such that AXA = A.

4B. Let D be a subset of \mathbb{R} , and let $f: D \to \mathbb{R}$ be a function. The graph of f is the subset $G := \{(x, y) : x \in D, y = f(x)\}$

of \mathbb{R}^2 . Prove that if G is compact, then f is continuous.

5B. Let $\mathbb{Q}(x)$ be the field of rational functions in one variable over \mathbb{Q} . Let $i: \mathbb{Q}(x) \to \mathbb{Q}(x)$ be the unique field automorphism such that $i(x) = x^{-1}$. Prove that the fixed subfield $\{r \in \mathbb{Q}(x) : i(r) = r\}$ is equal to $\mathbb{Q}(x + x^{-1})$.

6B. Evaluate the integral $\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx$, where a > 0.

7B. Let \mathbb{F}_p be the field of p elements. Let $\mathrm{SL}_2(\mathbb{F}_p)$ be the group of 2×2 matrices over \mathbb{F}_p of determinant 1. Let G be a normal subgroup of $\mathrm{SL}_2(\mathbb{F}_p)$. Suppose G contains a non-identity element γ that fixes a nonzero vector v. Show that any $\gamma' \in \mathrm{SL}_2(\mathbb{F}_p)$ that fixes a nonzero vector v' belongs to G.

8B. Let $f \colon \mathbb{R} \to \mathbb{R}$ be differentiable on \mathbb{R} . Suppose that f(0) = 0, and that $|f'(x)| \leq |f(x)|$ for all $x \in \mathbb{R}$. Prove that f(x) = 0 for all $x \in \mathbb{R}$.

9B. (a) Prove that if n > 0 is even, there does not exist $f(x) \in \mathbb{R}[x]$ such that $f(x)^2 - x$ is divisible by $x^n - 1$.

(b) For odd n > 0, find the number of $f(x) \in \mathbb{R}[x]$ of degree < n such that $f(x)^2 - x$ is divisible by $x^n - 1$.