
SPRING 2005 PRELIMINARY EXAMINATION SOLUTIONS

1A. (a) Let (an)∞1 be a sequence in R such that
∞∑

n=1

|an+1 − an| <∞.

Prove that (an)∞1 is a Cauchy sequence.

(b) Is the converse true? Give a proof or a counterexample.

Solution: (a) Given ε > 0, there is an integer N such that
∞∑

k=N

|ak+1 − ak| < ε.

Therefore, for any m,n with N ≤ m < n,∣∣∣∣∣
n−1∑
k=m

(ak+1 − ak)

∣∣∣∣∣ ≤
n−1∑
k=m

|ak+1 − ak| < ε.

The series on the left telescopes, giving

|an − am| < ε.

(b) Simple counterexample: an = (−1)n/n. Then |an+1 − an| = (2n + 1)/(n2 + n), so∑∞
n=1 |an+1 − an| = ∞ by the limit comparison test (compare with

∑∞
n=1

1
n
).

2A. Prove or disprove the statement: Every function f : R → R such that f(x + y) =
f(x) + f(y) for all x and y is continuous.

Solution: The statement is false. Let π be an irrational number. Then 1 and π are linearly
independent over Q, so we may extend the set {1, π} to a basis B of R as a Q-vector space.
There exists a Q-linear function f : R → Q taking arbitrarily prescribed values on the basis
B; choose f such that f(1) = 1, f(π) = 0. The first condition implies f(x) = x for all x ∈ Q.
If f were continuous it would follow that f(x) = x for all x ∈ R, contradicting f(π) = 0.

3A. Prove that there is no holomorphic bijection from the punctured disk 0 < |z| < 1 in C
onto the annulus r < |z| < R, where 0 < r < R <∞.

Solution: Suppose the analytic function f maps D \ {0} = {z : 0 < |z| < 1} onto the
annulus A. Then f is bounded in a neighborhood of 0, and therefore f has a removable
singularity at 0, so f extends to an analytic function on the open disk D. By the open
mapping theorem, f(0) = p ∈ A. Also there is some z0 ∈ D \ {0} with f(z0) = p. Then
there are small disjoint neighborhoods U, V of 0 and z0 respectively, such that f(U) and
f(V ) are neighborhoods of p.

Hence f(U \ {0}) and f(V ) are open sets in A which are not disjoint.
This shows that f is not 1− 1 on D \ {0}.
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4A. Suppose A and B are commuting n × n matrices over R. Suppose A and B are each
diagonalizable over R. Show that AB is diagonalizable over R.

Solution: Let V1, . . . , Vr be the eigenspaces in Kn corresponding to the distinct eigenvalues
of A in K. Because A is diagonalizable,

Kn =
⊕

i

Vi.

Because A and B commute, BVi ⊆ Vi. Because B is diagonalizable over R, its minimal
polynomial is a product of linear factors over R, and the minimal polynomial of B|Vi

divides
this, so B|Vi

is diagonalizable as well. Thus

Vi =
⊕

j

Wi j,

where the Wi j are the eigenspaces of B in Vi corresponding to distinct eigenvalues. Since
Wi j is an eigenspace for AB and ⊕

i j

Wi j = Kn,

AB must be diagonalizable.

5A. Let I be an open interval and let f : I → R have continuous k-th derivatives everywhere
on I for all k ≤ n − 1. Let a ∈ I be such that f (k)(a) = 0 for 1 ≤ k ≤ n − 1, and assume
that f (n)(a) is defined and f (n)(a) > 0. Prove that if n is even, then f has a local minimum
at a, and if n is odd, then f has no local extremum at a.

Solution: By the definition of derivative and the assumption that f (n−1)(a) = 0,

lim
x→a

f (n−1)(x)

x− a
= f (n)(a) > 0.

Hence there exists ε such that f (n−1)(x)/(x − a) > 0 for all x ∈ (a − ε, a + ε) − {a}. By
Taylor’s theorem with remainder, we have

f(x) = f(a) + f (n−1)(c)(x− a)n−1/(n− 1)!

for some c ∈ [a, x] if x ≥ a, or c ∈ [x, a] if x ≤ a. For x ∈ (a− ε, a) we have f (n−1)(c) ≤ 0, so
f(x) ≥ f(a) if n is even, f(x) ≤ f(a) if n is odd. For x ∈ (a, a + ε), we have f (n−1)(c) ≥ 0,
so f(x) ≥ f(a) for all n. This implies that f has a local minimum at a if n is even. If n is
odd, it implies that either f has no local extremum, or f is constant on (a− ε, a + ε). But
the latter possibility contradicts the assumption that f (n)(a) > 0.

6A. For every positive integer n, define [n]q = qn−1+qn−2+· · ·+q+1. Prove that [1]q[2]q · · · [r]q
divides [k + 1]q[k + 2]q · · · [k + r]q in the polynomial ring Z[q], for all positive integers k and
r.

Solution: Both polynomials are monic, so we need only show that every complex root ω
of [1]q[2]q · · · [r]q is also a root of [1]q[2]q · · · [r]q, with equal or greater multiplicity.

The roots of [n]q = (qn − 1)/(q − 1) are the n-th roots of unity, excluding 1, and they are
distinct. In particular, every root ω of [1]q[2]q · · · [r]q is a root of unity. Let d be the order of
ω in the multiplicative group C∗, that is, ω is a primitive d-th root of unity. Then ω is a root
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of [n]q if and only if d | n. It follows that ω has multiplicity br/dc as a root of [1]q[2]q · · · [r]q,
and multiplicity b(k+ r)/dc− bk/dc as a root of [k+ 1]q[k+ 2]q · · · [k+ r]q. To complete the
proof, we need the following inequality.

Lemma. b(k + r)/dc ≥ bk/dc+ br/dc for all k, r, d.
Proof. Set a = bk/dc, b = br/dc. Then k ≥ ad, r ≥ bd, hence k + r ≥ (a + b)d and

b(k + r)/dc ≥ b(a+ b)d/dc = a+ b, since the floor function is monotone.
(An alternative proof is to show by induction that the Gauss binomial coefficient[

k + r
r

]
q

:=
[k + 1]q[k + 2]q · · · [k + r]q

[1]q[2]q · · · [r]q

is a polynomial, by using a q-analog of the Pascal’s triangle recurrence.)

7A. Let U be a connected open subset of C, and let f(z) be a meromorphic function on U
having at least one pole. For each c ∈ U that is not a pole of f , let R(c) be the radius of
convergence of the Taylor series of f centered at c. Prove that R(c) extends to a continuous
function defined on all of U .

Solution: Let P be the set of poles of f in U . Each pole is isolated, so P is closed in U , and
U−P is open (both in U and in C). For c ∈ C and r > 0, let D(c, r) := {z ∈ C : |z−c| < r}.

Fix c ∈ U − P . Choose ε > 0 such that D(c, ε) ⊆ U − P . Then ε ≤ R(c), and the
function gc on D(c, R(c)) defined by the Taylor series at c agrees with f on D(c, ε). Note
that R(c) < ∞, since otherwise by connectedness f would equal the restriction to U of
an entire function gc, contradicting the fact that f has a pole. If c′ ∈ D(c, ε/2), then
{c, c′} ⊆ D(c′, ε/2) ⊆ D(c, ε), so the restrictions of gc and the analogous function gc′ to
D(c′, ε/2) each agree with the restriction of f . Thus gc, gc′ , f have the same Taylor series
centered at c, and they have the same Taylor series centered at c′. The restriction of gc

to D(c′, R(c) − |c − c′|) ⊆ D(c, R(c)) is holomorphic, so R(c′) ≥ R(c) − |c − c′|. Similarly
R(c) ≥ R(c′)− |c− c′|, so |R(c)−R(c′)| ≤ |c− c′|. Thus R is continuous at c.

Suppose p ∈ P . We may choose ε > 0 such that D(p, ε) − {p} ⊆ U − P . For c ∈
D(p, ε/2)−{p}, the restriction of gc to D(c, |c− p|) agrees with f , and gc(z) →∞ as z → p
within D(c, |c − p|), so R(c) = |c − p|. Thus defining R(p) = 0 at each p ∈ P gives an
extension of R to a continuous function on U .

Remark: It is not true that R(c) equals the distance from c to the complement of U −
{poles of f} in C, even if f does not extend to a larger open subset of C. For example, if f
is the standard branch of log z

z−100
on C− R≤0, then R(−1 + i) =

√
2, not 1.

The correct statement is that if c ∈ U is not a pole, then R(c) equals the radius of the
largest open disk on which there is some holomorphic function that agrees with f on some
open neighborhood of c.

8A. Let C and D be two n×n positive definite Hermitian matrices over C and let A = CD.
Prove that all eigenvalues of A are positive real numbers.

Solution: Let Ax = λx, x 6= 0. Then CDx = λx. Since D is positive definite, it is
invertible, so Dx 6= 0. Let BH denote the conjugate transpose of a matrix (or column
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vector) B. Since C is positive definite,

0 < 〈Dx,C(Dx)〉 = (Dx)HC(Dx) = (Dx)Hλx = λxHDHx = λxHDx,

since D is Hermitian. But xHDx > 0 since D is positive definite. Dividing, we get λ > 0.

9A. Let f : R2 → R be an infinitely differentiable function that is zero outside some bounded
subset of R2. Prove that

lim
ε→0

∫∫
x2+y2≥ε2

f(x, y)

(x+ iy)3
dx dy

exists.

Solution: The answer is positive. We must prove that

lim
δ,ε→0

∫∫
δ2<x2+y2<ε2

f(x, y)

(x+ iy)3
dx dy = 0

We write
f(x, y) = a+ bx+ cy +O(x2 + y2)

and consider each of the three terms. For the last one we note that

x2 + y2

|x+ iy|3
= (x2 + y2)−

1
2

which is integrable at zero. For the constant we compute∫∫
δ2<x2+y2<ε2

1

(x+ iy)3
dx dy =

∫ 2π

0

∫
δ<r<ε

r−2e−3iθ dr dθ = 0

For f(x, y) = y we have∫∫
δ2<x2+y2<ε2

y

(x+ iy)3
dx dy =

∫ 2π

0

∫
δ<r<ε

r−1 cos θ e−3iθ dr dθ

=
1

2
(ln ε− ln δ)

∫ 2π

0

e−2iθ + e−4iθ dθ

= 0

The case f(x, y) = x is similar by symmetry. This concludes the proof.

1B. Let G be a finite group. Suppose ab = ba holds whenever a, b ∈ G have prime power
order. Prove that G is abelian.

Solution: Let x, y ∈ G. By the Chinese Remainder Theorem, the finite cyclic group gener-
ated by x is a product of cyclic groups of prime power order, so we can write x = x1x2 · · ·xm

where each xi has prime power order. Write y = y1y2 · · · yn similarly. By assumption x1

commutes with each yj, so x1 commutes with their product y. Similarly xi commutes with
y for each i, so their product x commutes with y.

2B. Prove that, for any ε > 0, the function f(z) = sin z + 1
z+i

has infinitely many zeros in
the strip | Im z| < ε.

Solution: We use Rouché’s theorem. Without loss of generality, assume ε < π. Let δ be
the minimum value of | sin z| on the compact set |z| = ε. Since the zeros of sin z in C are
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the integer multiples of π, we have δ > 0. By periodicity, we have | sin z| ≥ δ also on the
circle Cn defined by |z−2πn| = ε for any n ∈ Z. On the other hand, if n is sufficiently large,
then | 1

z+i
| < δ on Cn. For such n, Rouché’s theorem implies that f(z) has the same number

of zeros as sin z inside Cn, namely 1. Letting n vary, we find infinitely many zeros of f(z)
inside the strip.

3B. Let Mn(F ) be the ring of n×n matrices over a field F . Prove that for every A ∈Mn(F )
there exists X ∈Mn(F ) such that AXA = A.

Solution: Let φ : F n → F n be the linear transformation defined by A. Let W = kerφ,
and let V ⊆ F n be a complementary subspace, such that F n = W ⊕ V . Let U = imφ. Note
that dimU = dimV = rankA. The restriction φ of φ to V is injective, hence φ : V → U is
an isomorphism. Let ψ : U → V be its inverse, and let ψ be any extension of ψ from U to
all of F n. Take X to be the matrix of ψ. Then for every vector v in the column space U of
A, we have AXv = φψv = v, which implies AXA = A.

4B. Let D be a subset of R, and let f : D → R be a function. The graph of f is the subset

G := {(x, y) : x ∈ D, y = f(x)}

of R2. Prove that if G is compact, then f is continuous.

Solution: It suffices to prove that f−1(C) is closed in D for every closed subset C of R. Let
π1, π2 be the coordinate projections R2 → R. Then π−1

2 (C) is closed in R2. Thus π−1
2 (C)∩G

is closed in G and hence compact. Now f−1(C) = π1(π
−1
2 (C) ∩ G) is the continuous image

of a compact set, so it is compact. Thus f−1(C) is closed in R, hence closed in D.

5B. Let Q(x) be the field of rational functions in one variable over Q. Let i : Q(x) → Q(x)
be the unique field automorphism such that i(x) = x−1. Prove that the fixed subfield
{r ∈ Q(x) : i(r) = r} is equal to Q(x+ x−1).

Solution: Let F denote the fixed subfield, and set y = x + x−1. Obviously Q(y) ⊆ F 6=
Q(x). The equation x2 − yx + 1 = 0 shows that Q(x) is an algebraic extension of Q(y),
and [Q(x) : Q(y)] = 2. Since the intermediate field F is not equal to Q(x), we must have
F = Q(y).

6B. Evaluate the integral

∫ ∞

0

x sin x

x2 + a2
dx, where a > 0.

Solution: Let I be the desired integral. Then

I =
1

2

∫ ∞

−∞

x sin x

x2 + a2
dx

=
1

2
lim

R→∞

∫ R

−R

x sin x

x2 + a2
dx

=
1

2
lim

R→∞
Im

∫ R

−R

xeix

x2 + a2
dx.
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Integrate zeiz

z2+a2 counterclockwise around the curve −R ≤ x ≤ R, z = Reiθ, 0 ≤ θ ≤ π, where
R > a.

The residue of the integrand at z = ia is

iae−a

2ia
=
e−a

2
.

Moreover, by “Jordan’s lemma”, the integral over the semicircular part of the curve tends
to 0 as R→∞.

Therefore I = 1
2
· Im(2πie−a/2) = πe−a

2
.

7B. Let Fp be the field of p elements. Let SL2(Fp) be the group of 2× 2 matrices over Fp of
determinant 1. Let G be a normal subgroup of SL2(Fp). Suppose G contains a non-identity
element γ that fixes a nonzero vector v. Show that any γ′ ∈ SL2(Fp) that fixes a nonzero
vector v′ belongs to G.

Solution: For each vector u, let Su be the set of elements of SL2(Fp) that fix u. First, we
can complete {v} to a basis {v, w}. With respect to this basis, the matrix of γ is upper-
triangular and hence is (

1 x
0 1

)
for some x 6= 0. Then Sv (where now v =

(
1
0

)
) consists of the powers γk =

(
1 kx
0 1

)
, so

Sv ⊆ G.

Now suppose v′ :=

(
a
c

)
∈ F2

p \ 0. Then we can find b, d ∈ Fp so that ad − bc = 1 (take

d = 0 and c = −1/b or c = 0 and d = 1/a). Thus

ρ :=

(
a b
c d

)
∈ SL2(Fp)

satisfies ρv = v′. Now Sv′ = ρSvρ
−1 ⊆ ρGρ−1 = G, which is what we needed to show.

Remark: Many students confused SL2(Fp)-conjugacy with similarity, which is GL2(Fp)-
conjugacy.

8B. Let f : R → R be differentiable on R. Suppose that f(0) = 0, and that |f ′(x)| ≤ |f(x)|
for all x ∈ R. Prove that f(x) = 0 for all x ∈ R.

Solution: Let us show that f(x) = 0 for all x ∈ [0, 1]. Let a = max{|f(x)| : x ∈ [0, 1]}. We
have to show that a = 0. Suppose on the contrary a > 0. Let E = {x ∈ [0, 1] : |f(x)| = a}.
Then E is closed and α = inf E ∈ E, i.e., |f(α)| = a > 0 ⇒ α > 0 since f(0) = 0. Thus
0 < α ≤ 1 and |f(c)| < a(∗) for all 0 ≤ c < α. We have a = |f(α)| = |f(α)−f(0)| = |f ′(c)|·α
(for some c ∈ (0, α) by the Mean Value Theorem) ≤ |f(c)| · α ≤ |f(c)| (since 0 < α ≤ 1).
This contradicts (∗). Thus f ≡ 0 on [0, 1]. In particular, f(1) = 0 and we can use the same
argument to show f ≡ 0 on [1, 2] and on every [n, n+ 1], n = ±1,±2, . . . .

Alternative solution: Suppose f(x) is not identically zero. Replacing f(x) by ±f(±x) we
may assume that there exists b > 0 such that f(b) > 0. Let a = sup{x ∈ [0, b] : f(x) = 0}.
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Thus f is positive on (a, b). So f ′ ≤ f on (a, b). Thus the derivative of g = e−xf is ≤ 0 on
(a, b). This contradicts g(a) = 0 < g(b).

9B. (a) Prove that if n > 0 is even, there does not exist f(x) ∈ R[x] such that f(x)2 − x is
divisible by xn − 1.

(b) For odd n > 0, find the number of f(x) ∈ R[x] of degree < n such that f(x)2 − x is
divisible by xn − 1.

Solution: (a) If f(x)2 − x is divisible by xn − 1, it is divisible by the factor x + 1, so
f(−1)2 − (−1) = 0. This is impossible since f(−1) ∈ R.

(b) Equivalently, we must count the square roots of the image of x in R[x]/(xn − 1). If n

is odd, only one zero of xn − 1 is real, so xn − 1 = (x− 1)
∏(n−1)/2

j=1 fj(x) where fj(x) ∈ R[x]
is irreducible of degree 2. Moreover, the factors are distinct, since xn − 1 shares no zeros
with its derivative nxn−1. By the Chinese Remainder Theorem,

R[x]/(xn − 1) ' R[x]

(x− 1)
×

(n−1)/2∏
j=1

R[x]

(fj(x))
' R×

(n−1)/2∏
j=1

C.

To choose a square root of the image of x is equivalent to choosing a square of the image
of x in each factor. The image of x in the factor R is 1, and the image in each factor C
is nonzero (since x has an inverse in R[x]/(xn − 1), namely xn−1), so there are 2 choices of
square root in each of the (n+ 1)/2 factors. Thus the answer is 2(n+1)/2.

Alternative solution to (b): By Lagrange interpolation, a polynomial f(x) ∈ C[x] of degree
< n is uniquely specified by its values at the n-th roots of unity. Such a specification gives
a polynomial with real coefficients if and only if the prescribed values at complex conjugate
roots of unity are complex conjugates. Now f(x)2−x is divisible by xn−1 if and only if f(w)
is a square root of w for each n-th root of unity w. We can construct such f by prescribing
f(1) = ±1 and f(w) for each n-th root of unity in the upper half plane, but then we must

choose f(w) = f(w). There are (n− 1)/2 n-th roots of unity in the upper half plane, so we
have 1 + (n− 1)/2 = (n+ 1)/2 sign choices. Thus there are 2(n+1)/2 possibilities for f .
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