SPRING 2005 PRELIMINARY EXAMINATION SOLUTIONS

1A. (a) Let $(a_n)_1^{\infty}$ be a sequence in \mathbb{R} such that

$$\sum_{n=1}^{\infty} |a_{n+1} - a_n| < \infty.$$

Prove that $(a_n)_1^\infty$ is a Cauchy sequence.

(b) Is the converse true? Give a proof or a counterexample.

Solution: (a) Given $\varepsilon > 0$, there is an integer N such that

$$\sum_{k=N}^{\infty} |a_{k+1} - a_k| < \varepsilon.$$

Therefore, for any m, n with $N \leq m < n$,

$$\left|\sum_{k=m}^{n-1} (a_{k+1} - a_k)\right| \le \sum_{k=m}^{n-1} |a_{k+1} - a_k| < \varepsilon.$$

The series on the left telescopes, giving

$$|a_n - a_m| < \varepsilon.$$

(b) Simple counterexample: $a_n = (-1)^n/n$. Then $|a_{n+1} - a_n| = (2n+1)/(n^2+n)$, so $\sum_{n=1}^{\infty} |a_{n+1} - a_n| = \infty$ by the limit comparison test (compare with $\sum_{n=1}^{\infty} \frac{1}{n}$).

2A. Prove or disprove the statement: Every function $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y) for all x and y is continuous.

Solution: The statement is false. Let π be an irrational number. Then 1 and π are linearly independent over \mathbb{Q} , so we may extend the set $\{1, \pi\}$ to a basis B of \mathbb{R} as a \mathbb{Q} -vector space. There exists a \mathbb{Q} -linear function $f \colon \mathbb{R} \to \mathbb{Q}$ taking arbitrarily prescribed values on the basis B; choose f such that f(1) = 1, $f(\pi) = 0$. The first condition implies f(x) = x for all $x \in \mathbb{Q}$. If f were continuous it would follow that f(x) = x for all $x \in \mathbb{R}$, contradicting $f(\pi) = 0$.

3A. Prove that there is no holomorphic bijection from the punctured disk 0 < |z| < 1 in \mathbb{C} onto the annulus r < |z| < R, where $0 < r < R < \infty$.

Solution: Suppose the analytic function f maps $D \setminus \{0\} = \{z : 0 < |z| < 1\}$ onto the annulus A. Then f is bounded in a neighborhood of 0, and therefore f has a removable singularity at 0, so f extends to an analytic function on the open disk D. By the open mapping theorem, $f(0) = p \in A$. Also there is some $z_0 \in D \setminus \{0\}$ with $f(z_0) = p$. Then there are small disjoint neighborhoods U, V of 0 and z_0 respectively, such that f(U) and f(V) are neighborhoods of p.

Hence $f(U \setminus \{0\})$ and f(V) are open sets in A which are not disjoint. This shows that f is not 1 - 1 on $D \setminus \{0\}$. 4A. Suppose A and B are commuting $n \times n$ matrices over \mathbb{R} . Suppose A and B are each diagonalizable over \mathbb{R} . Show that AB is diagonalizable over \mathbb{R} .

Solution: Let V_1, \ldots, V_r be the eigenspaces in K^n corresponding to the distinct eigenvalues of A in K. Because A is diagonalizable,

$$K^n = \bigoplus_i V_i.$$

Because A and B commute, $BV_i \subseteq V_i$. Because B is diagonalizable over \mathbb{R} , its minimal polynomial is a product of linear factors over \mathbb{R} , and the minimal polynomial of $B|_{V_i}$ divides this, so $B|_{V_i}$ is diagonalizable as well. Thus

$$V_i = \bigoplus_j W_{ij},$$

where the W_{ij} are the eigenspaces of B in V_i corresponding to distinct eigenvalues. Since W_{ij} is an eigenspace for AB and

$$\bigoplus_{i\,j} W_{i\,j} = K^n,$$

AB must be diagonalizable.

5A. Let I be an open interval and let $f: I \to \mathbb{R}$ have continuous k-th derivatives everywhere on I for all $k \leq n-1$. Let $a \in I$ be such that $f^{(k)}(a) = 0$ for $1 \leq k \leq n-1$, and assume that $f^{(n)}(a)$ is defined and $f^{(n)}(a) > 0$. Prove that if n is even, then f has a local minimum at a, and if n is odd, then f has no local extremum at a.

Solution: By the definition of derivative and the assumption that $f^{(n-1)}(a) = 0$,

$$\lim_{x \to a} \frac{f^{(n-1)}(x)}{x-a} = f^{(n)}(a) > 0.$$

Hence there exists ϵ such that $f^{(n-1)}(x)/(x-a) > 0$ for all $x \in (a - \epsilon, a + \epsilon) - \{a\}$. By Taylor's theorem with remainder, we have

$$f(x) = f(a) + f^{(n-1)}(c)(x-a)^{n-1}/(n-1)!$$

for some $c \in [a, x]$ if $x \ge a$, or $c \in [x, a]$ if $x \le a$. For $x \in (a - \epsilon, a)$ we have $f^{(n-1)}(c) \le 0$, so $f(x) \ge f(a)$ if n is even, $f(x) \le f(a)$ if n is odd. For $x \in (a, a + \epsilon)$, we have $f^{(n-1)}(c) \ge 0$, so $f(x) \ge f(a)$ for all n. This implies that f has a local minimum at a if n is even. If n is odd, it implies that either f has no local extremum, or f is constant on $(a - \epsilon, a + \epsilon)$. But the latter possibility contradicts the assumption that $f^{(n)}(a) > 0$.

6A. For every positive integer n, define $[n]_q = q^{n-1} + q^{n-2} + \cdots + q + 1$. Prove that $[1]_q[2]_q \cdots [r]_q$ divides $[k+1]_q[k+2]_q \cdots [k+r]_q$ in the polynomial ring $\mathbb{Z}[q]$, for all positive integers k and r.

Solution: Both polynomials are monic, so we need only show that every complex root ω of $[1]_q[2]_q \cdots [r]_q$ is also a root of $[1]_q[2]_q \cdots [r]_q$, with equal or greater multiplicity.

The roots of $[n]_q = (q^n - 1)/(q - 1)$ are the *n*-th roots of unity, excluding 1, and they are distinct. In particular, every root ω of $[1]_q[2]_q \cdots [r]_q$ is a root of unity. Let *d* be the order of ω in the multiplicative group \mathbb{C}^* , that is, ω is a primitive *d*-th root of unity. Then ω is a root

of $[n]_q$ if and only if $d \mid n$. It follows that ω has multiplicity $\lfloor r/d \rfloor$ as a root of $[1]_q[2]_q \cdots [r]_q$, and multiplicity $\lfloor (k+r)/d \rfloor - \lfloor k/d \rfloor$ as a root of $[k+1]_q[k+2]_q \cdots [k+r]_q$. To complete the proof, we need the following inequality.

Lemma. $\lfloor (k+r)/d \rfloor \ge \lfloor k/d \rfloor + \lfloor r/d \rfloor$ for all k, r, d.

Proof. Set $a = \lfloor k/d \rfloor$, $b = \lfloor r/d \rfloor$. Then $k \ge ad$, $r \ge bd$, hence $k + r \ge (a + b)d$ and $\lfloor (k+r)/d \rfloor \ge \lfloor (a+b)d/d \rfloor = a+b$, since the floor function is monotone.

(An alternative proof is to show by induction that the Gauss binomial coefficient

$$\begin{bmatrix} k+r\\r \end{bmatrix}_q := \frac{[k+1]_q[k+2]_q\cdots[k+r]_q}{[1]_q[2]_q\cdots[r]_q}$$

is a polynomial, by using a q-analog of the Pascal's triangle recurrence.)

7A. Let U be a connected open subset of \mathbb{C} , and let f(z) be a meromorphic function on U having at least one pole. For each $c \in U$ that is not a pole of f, let R(c) be the radius of convergence of the Taylor series of f centered at c. Prove that R(c) extends to a continuous function defined on all of U.

Solution: Let P be the set of poles of f in U. Each pole is isolated, so P is closed in U, and U-P is open (both in U and in \mathbb{C}). For $c \in \mathbb{C}$ and r > 0, let $D(c, r) := \{z \in \mathbb{C} : |z-c| < r\}$.

Fix $c \in U - P$. Choose $\epsilon > 0$ such that $D(c, \epsilon) \subseteq U - P$. Then $\epsilon \leq R(c)$, and the function g_c on D(c, R(c)) defined by the Taylor series at c agrees with f on $D(c, \epsilon)$. Note that $R(c) < \infty$, since otherwise by connectedness f would equal the restriction to U of an entire function g_c , contradicting the fact that f has a pole. If $c' \in D(c, \epsilon/2)$, then $\{c, c'\} \subseteq D(c', \epsilon/2) \subseteq D(c, \epsilon)$, so the restrictions of g_c and the analogous function $g_{c'}$ to $D(c', \epsilon/2)$ each agree with the restriction of f. Thus $g_c, g_{c'}, f$ have the same Taylor series centered at c, and they have the same Taylor series centered at c'. The restriction of g_c to $D(c', R(c) - |c - c'|) \subseteq D(c, R(c))$ is holomorphic, so $R(c') \ge R(c) - |c - c'|$. Similarly $R(c) \ge R(c') - |c - c'|$, so $|R(c) - R(c')| \le |c - c'|$. Thus R is continuous at c.

Suppose $p \in P$. We may choose $\epsilon > 0$ such that $D(p,\epsilon) - \{p\} \subseteq U - P$. For $c \in D(p,\epsilon/2) - \{p\}$, the restriction of g_c to D(c, |c-p|) agrees with f, and $g_c(z) \to \infty$ as $z \to p$ within D(c, |c-p|), so R(c) = |c-p|. Thus defining R(p) = 0 at each $p \in P$ gives an extension of R to a continuous function on U.

Remark: It is not true that R(c) equals the distance from c to the complement of $U - \{\text{poles of } f\}$ in \mathbb{C} , even if f does not extend to a larger open subset of \mathbb{C} . For example, if f is the standard branch of $\frac{\log z}{z-100}$ on $\mathbb{C} - \mathbb{R}_{\leq 0}$, then $R(-1+i) = \sqrt{2}$, not 1.

The correct statement is that if $c \in U$ is not a pole, then R(c) equals the radius of the largest open disk on which there is some holomorphic function that agrees with f on some open neighborhood of c.

8A. Let C and D be two $n \times n$ positive definite Hermitian matrices over \mathbb{C} and let A = CD. Prove that all eigenvalues of A are positive real numbers.

Solution: Let $Ax = \lambda x$, $x \neq 0$. Then $CDx = \lambda x$. Since D is positive definite, it is invertible, so $Dx \neq 0$. Let B^H denote the conjugate transpose of a matrix (or column

vector) B. Since C is positive definite,

$$0 < \langle Dx, C(Dx) \rangle = (Dx)^H C(Dx) = (Dx)^H \lambda x = \lambda x^H D^H x = \lambda x^H Dx,$$

since D is Hermitian. But $x^H D x > 0$ since D is positive definite. Dividing, we get $\lambda > 0$.

9A. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be an infinitely differentiable function that is zero outside some bounded subset of \mathbb{R}^2 . Prove that

$$\lim_{\epsilon \to 0} \iint_{x^2 + y^2 \ge \epsilon^2} \frac{f(x, y)}{(x + iy)^3} \, dx \, dy$$

exists.

Solution: The answer is positive. We must prove that

$$\lim_{\delta,\epsilon \to 0} \iint_{\delta^2 < x^2 + y^2 < \epsilon^2} \frac{f(x,y)}{(x+iy)^3} \, dx \, dy = 0$$

We write

$$f(x,y) = a + bx + cy + O(x^2 + y^2)$$

and consider each of the three terms. For the last one we note that

$$\frac{x^2 + y^2}{|x + iy|^3} = (x^2 + y^2)^{-\frac{1}{2}}$$

which is integrable at zero. For the constant we compute

$$\iint_{\delta^2 < x^2 + y^2 < \epsilon^2} \frac{1}{(x + iy)^3} \, dx \, dy = \int_0^{2\pi} \int_{\delta < r < \epsilon} r^{-2} e^{-3i\theta} \, dr \, d\theta = 0$$

For f(x, y) = y we have

$$\iint_{\delta^2 < x^2 + y^2 < \epsilon^2} \frac{y}{(x + iy)^3} \, dx \, dy = \int_0^{2\pi} \int_{\delta < r < \epsilon} r^{-1} \cos \theta \, e^{-3i\theta} \, dr \, d\theta$$
$$= \frac{1}{2} (\ln \epsilon - \ln \delta) \int_0^{2\pi} e^{-2i\theta} + e^{-4i\theta} \, d\theta$$
$$= 0$$

The case f(x, y) = x is similar by symmetry. This concludes the proof.

1B. Let G be a finite group. Suppose ab = ba holds whenever $a, b \in G$ have prime power order. Prove that G is abelian.

Solution: Let $x, y \in G$. By the Chinese Remainder Theorem, the finite cyclic group generated by x is a product of cyclic groups of prime power order, so we can write $x = x_1 x_2 \cdots x_m$ where each x_i has prime power order. Write $y = y_1 y_2 \cdots y_n$ similarly. By assumption x_1 commutes with each y_j , so x_1 commutes with their product y. Similarly x_i commutes with y for each i, so their product x commutes with y.

2B. Prove that, for any $\varepsilon > 0$, the function $f(z) = \sin z + \frac{1}{z+i}$ has infinitely many zeros in the strip $|\operatorname{Im} z| < \varepsilon$.

Solution: We use Rouché's theorem. Without loss of generality, assume $\varepsilon < \pi$. Let δ be the minimum value of $|\sin z|$ on the compact set $|z| = \varepsilon$. Since the zeros of $\sin z$ in \mathbb{C} are

the integer multiples of π , we have $\delta > 0$. By periodicity, we have $|\sin z| \ge \delta$ also on the circle C_n defined by $|z - 2\pi n| = \varepsilon$ for any $n \in \mathbb{Z}$. On the other hand, if n is sufficiently large, then $|\frac{1}{z+i}| < \delta$ on C_n . For such n, Rouché's theorem implies that f(z) has the same number of zeros as $\sin z$ inside C_n , namely 1. Letting n vary, we find infinitely many zeros of f(z) inside the strip.

3B. Let $M_n(F)$ be the ring of $n \times n$ matrices over a field F. Prove that for every $A \in M_n(F)$ there exists $X \in M_n(F)$ such that AXA = A.

Solution: Let $\phi: F^n \to F^n$ be the linear transformation defined by A. Let $W = \ker \phi$, and let $V \subseteq F^n$ be a complementary subspace, such that $F^n = W \oplus V$. Let $U = \operatorname{im} \phi$. Note that dim $U = \dim V = \operatorname{rank} A$. The restriction $\overline{\phi}$ of ϕ to V is injective, hence $\overline{\phi}: V \to U$ is an isomorphism. Let $\overline{\psi}: U \to V$ be its inverse, and let ψ be any extension of $\overline{\psi}$ from U to all of F^n . Take X to be the matrix of ψ . Then for every vector v in the column space U of A, we have $AXv = \phi\psi v = v$, which implies AXA = A.

4B. Let D be a subset of \mathbb{R} , and let $f: D \to \mathbb{R}$ be a function. The graph of f is the subset

$$G := \{(x, y) : x \in D, \ y = f(x)\}$$

of \mathbb{R}^2 . Prove that if G is compact, then f is continuous.

Solution: It suffices to prove that $f^{-1}(C)$ is closed in D for every closed subset C of \mathbb{R} . Let π_1, π_2 be the coordinate projections $\mathbb{R}^2 \to \mathbb{R}$. Then $\pi_2^{-1}(C)$ is closed in \mathbb{R}^2 . Thus $\pi_2^{-1}(C) \cap G$ is closed in G and hence compact. Now $f^{-1}(C) = \pi_1(\pi_2^{-1}(C) \cap G)$ is the continuous image of a compact set, so it is compact. Thus $f^{-1}(C)$ is closed in \mathbb{R} , hence closed in D.

5B. Let $\mathbb{Q}(x)$ be the field of rational functions in one variable over \mathbb{Q} . Let $i: \mathbb{Q}(x) \to \mathbb{Q}(x)$ be the unique field automorphism such that $i(x) = x^{-1}$. Prove that the fixed subfield $\{r \in \mathbb{Q}(x) : i(r) = r\}$ is equal to $\mathbb{Q}(x + x^{-1})$.

Solution: Let F denote the fixed subfield, and set $y = x + x^{-1}$. Obviously $\mathbb{Q}(y) \subseteq F \neq \mathbb{Q}(x)$. The equation $x^2 - yx + 1 = 0$ shows that $\mathbb{Q}(x)$ is an algebraic extension of $\mathbb{Q}(y)$, and $[\mathbb{Q}(x) : \mathbb{Q}(y)] = 2$. Since the intermediate field F is not equal to $\mathbb{Q}(x)$, we must have $F = \mathbb{Q}(y)$.

6B. Evaluate the integral $\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx$, where a > 0.

Solution: Let I be the desired integral. Then

$$I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx$$
$$= \frac{1}{2} \lim_{R \to \infty} \int_{-R}^{R} \frac{x \sin x}{x^2 + a^2} dx$$
$$= \frac{1}{2} \lim_{R \to \infty} \lim_{5} \int_{-R}^{R} \frac{x e^{ix}}{x^2 + a^2} dx$$

Integrate $\frac{ze^{iz}}{z^2+a^2}$ counterclockwise around the curve $-R \leq x \leq R$, $z = Re^{i\theta}$, $0 \leq \theta \leq \pi$, where R > a.

The residue of the integrand at z = ia is

$$\frac{iae^{-a}}{2ia} = \frac{e^{-a}}{2}.$$

Moreover, by "Jordan's lemma", the integral over the semicircular part of the curve tends to 0 as $R \to \infty$.

Therefore $I = \frac{1}{2} \cdot \operatorname{Im}(2\pi i e^{-a}/2) = \frac{\pi e^{-a}}{2}$.

7B. Let \mathbb{F}_p be the field of p elements. Let $\mathrm{SL}_2(\mathbb{F}_p)$ be the group of 2×2 matrices over \mathbb{F}_p of determinant 1. Let G be a normal subgroup of $\mathrm{SL}_2(\mathbb{F}_p)$. Suppose G contains a non-identity element γ that fixes a nonzero vector v. Show that any $\gamma' \in \mathrm{SL}_2(\mathbb{F}_p)$ that fixes a nonzero vector v' belongs to G.

Solution: For each vector u, let S_u be the set of elements of $SL_2(\mathbb{F}_p)$ that fix u. First, we can complete $\{v\}$ to a basis $\{v, w\}$. With respect to this basis, the matrix of γ is upper-triangular and hence is

 $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ for some $x \neq 0$. Then S_v (where now $v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$) consists of the powers $\gamma^k = \begin{pmatrix} 1 & kx \\ 0 & 1 \end{pmatrix}$, so $S_v \subseteq G$.

Now suppose $v' := \begin{pmatrix} a \\ c \end{pmatrix} \in \mathbb{F}_p^2 \setminus 0$. Then we can find $b, d \in \mathbb{F}_p$ so that ad - bc = 1 (take d = 0 and c = -1/b or c = 0 and d = 1/a). Thus

$$\rho := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{F}_p)$$

satisfies $\rho v = v'$. Now $S_{v'} = \rho S_v \rho^{-1} \subseteq \rho G \rho^{-1} = G$, which is what we needed to show.

Remark: Many students confused $SL_2(\mathbb{F}_p)$ -conjugacy with similarity, which is $GL_2(\mathbb{F}_p)$ -conjugacy.

8B. Let $f \colon \mathbb{R} \to \mathbb{R}$ be differentiable on \mathbb{R} . Suppose that f(0) = 0, and that $|f'(x)| \leq |f(x)|$ for all $x \in \mathbb{R}$. Prove that f(x) = 0 for all $x \in \mathbb{R}$.

Solution: Let us show that f(x) = 0 for all $x \in [0, 1]$. Let $a = \max\{|f(x)| : x \in [0, 1]\}$. We have to show that a = 0. Suppose on the contrary a > 0. Let $E = \{x \in [0, 1] : |f(x)| = a\}$. Then E is closed and $\alpha = \inf E \in E$, i.e., $|f(\alpha)| = a > 0 \Rightarrow \alpha > 0$ since f(0) = 0. Thus $0 < \alpha \le 1$ and |f(c)| < a(*) for all $0 \le c < \alpha$. We have $a = |f(\alpha)| = |f(\alpha) - f(0)| = |f'(c)| \cdot \alpha$ (for some $c \in (0, \alpha)$ by the Mean Value Theorem) $\le |f(c)| \cdot \alpha \le |f(c)|$ (since $0 < \alpha \le 1$). This contradicts (*). Thus $f \equiv 0$ on [0, 1]. In particular, f(1) = 0 and we can use the same argument to show $f \equiv 0$ on [1, 2] and on every $[n, n + 1], n = \pm 1, \pm 2, \ldots$

Alternative solution: Suppose f(x) is not identically zero. Replacing f(x) by $\pm f(\pm x)$ we may assume that there exists b > 0 such that f(b) > 0. Let $a = \sup\{x \in [0, b] : f(x) = 0\}$.

Thus f is positive on (a, b). So $f' \leq f$ on (a, b). Thus the derivative of $g = e^{-x}f$ is ≤ 0 on (a, b). This contradicts g(a) = 0 < g(b).

9B. (a) Prove that if n > 0 is even, there does not exist $f(x) \in \mathbb{R}[x]$ such that $f(x)^2 - x$ is divisible by $x^n - 1$.

(b) For odd n > 0, find the number of $f(x) \in \mathbb{R}[x]$ of degree < n such that $f(x)^2 - x$ is divisible by $x^n - 1$.

Solution: (a) If $f(x)^2 - x$ is divisible by $x^n - 1$, it is divisible by the factor x + 1, so $f(-1)^2 - (-1) = 0$. This is impossible since $f(-1) \in \mathbb{R}$.

(b) Equivalently, we must count the square roots of the image of x in $\mathbb{R}[x]/(x^n-1)$. If n is odd, only one zero of $x^n - 1$ is real, so $x^n - 1 = (x-1) \prod_{j=1}^{(n-1)/2} f_j(x)$ where $f_j(x) \in \mathbb{R}[x]$ is irreducible of degree 2. Moreover, the factors are distinct, since $x^n - 1$ shares no zeros with its derivative nx^{n-1} . By the Chinese Remainder Theorem,

$$\mathbb{R}[x]/(x^n-1) \simeq \frac{\mathbb{R}[x]}{(x-1)} \times \prod_{j=1}^{(n-1)/2} \frac{\mathbb{R}[x]}{(f_j(x))} \simeq \mathbb{R} \times \prod_{j=1}^{(n-1)/2} \mathbb{C}.$$

To choose a square root of the image of x is equivalent to choosing a square of the image of x in each factor. The image of x in the factor \mathbb{R} is 1, and the image in each factor \mathbb{C} is nonzero (since x has an inverse in $\mathbb{R}[x]/(x^n - 1)$, namely x^{n-1}), so there are 2 choices of square root in each of the (n + 1)/2 factors. Thus the answer is $2^{(n+1)/2}$.

Alternative solution to (b): By Lagrange interpolation, a polynomial $f(x) \in \mathbb{C}[x]$ of degree < n is uniquely specified by its values at the *n*-th roots of unity. Such a specification gives a polynomial with real coefficients if and only if the prescribed values at complex conjugate roots of unity are complex conjugates. Now $f(x)^2 - x$ is divisible by $x^n - 1$ if and only if f(w) is a square root of w for each n-th root of unity w. We can construct such f by prescribing $f(1) = \pm 1$ and f(w) for each n-th root of unity in the upper half plane, but then we must choose $f(\overline{w}) = \overline{f(w)}$. There are (n-1)/2 *n*-th roots of unity in the upper half plane, so we have 1 + (n-1)/2 = (n+1)/2 sign choices. Thus there are $2^{(n+1)/2}$ possibilities for f.