SPRING 2005 PRELIMINARY EXAMINATION SOLUTIONS

1A. (a) Let (a,)$° be a sequence in R such that

o0
Z a1 — a,| < 0.
n=1

Prove that (a,)$° is a Cauchy sequence.

(b) Is the converse true? Give a proof or a counterexample.

Solution: (a) Given € > 0, there is an integer N such that

00
Z |ak+1 — ak| < E.
k=N

Therefore, for any m,n with N <m <n,

n—1 n—1
Z(ak—H —a)| < Z lak+1 — ax| <e.
k=m k=m

The series on the left telescopes, giving

la, —an| < e.

(b) Simple counterexample: a, = (—1)"/n. Then |a,,; — a,| = (2n + 1)/(n* + n), so
> o lant1 — ay| = oo by the limit comparison test (compare with > 7, ).
2A. Prove or disprove the statement: Every function f: R — R such that f(z +y) =
f(z) + f(y) for all z and y is continuous.

Solution: The statement is false. Let 7 be an irrational number. Then 1 and 7 are linearly
independent over QQ, so we may extend the set {1, 7} to a basis B of R as a Q-vector space.
There exists a Q-linear function f: R — Q taking arbitrarily prescribed values on the basis
B; choose f such that f(1) =1, f(7) = 0. The first condition implies f(z) = x for all z € Q.
If f were continuous it would follow that f(z) = x for all z € R, contradicting f(7) = 0.

3A. Prove that there is no holomorphic bijection from the punctured disk 0 < |z| < 1 in C
onto the annulus r < |z| < R, where 0 < r < R < o0.

Solution: Suppose the analytic function f maps D \ {0} = {z : 0 < |z] < 1} onto the
annulus A. Then f is bounded in a neighborhood of 0, and therefore f has a removable
singularity at 0, so f extends to an analytic function on the open disk D. By the open
mapping theorem, f(0) = p € A. Also there is some zy € D \ {0} with f(z) = p. Then
there are small disjoint neighborhoods U,V of 0 and zy respectively, such that f(U) and
f(V) are neighborhoods of p.

Hence f(U \ {0}) and f(V) are open sets in A which are not disjoint.

This shows that f is not 1 — 1 on D \ {0}.
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4A. Suppose A and B are commuting n X n matrices over R. Suppose A and B are each
diagonalizable over R. Show that AB is diagonalizable over R.

Solution: Let Vi, ..., V, be the eigenspaces in K™ corresponding to the distinct eigenvalues
of Ain K. Because A is diagonalizable,

K":@m.

Because A and B commute, BV; C V;. Because B is diagonalizable over R, its minimal
polynomial is a product of linear factors over R, and the minimal polynomial of Bly, divides
this, so B|y, is diagonalizable as well. Thus

Vi = P wi,
J

where the W;; are the eigenspaces of B in V; corresponding to distinct eigenvalues. Since
W;; is an eigenspace for AB and

@ mj = K",

i

AB must be diagonalizable.

5A. Let I be an open interval and let f: I — R have continuous k-th derivatives everywhere
on I for all k <n —1. Let a € I be such that f*)(a) = 0 for 1 < k < n — 1, and assume
that £ (a) is defined and f™(a) > 0. Prove that if n is even, then f has a local minimum
at a, and if n is odd, then f has no local extremum at a.

Solution: By the definition of derivative and the assumption that £~ (a) =0,
(n—1)
lim —f (z)
r—a T —a

Hence there exists ¢ such that f® 1 (2)/(z —a) > 0 for all € (a —€,a + ¢) — {a}. By
Taylor’s theorem with remainder, we have

f(x) = fla) + " V(o) (@ —a)" ! /(n—1)!
for some ¢ € [a,z] if * > a, or ¢ € [z, a] if # < a. For x € (a — ¢, a) we have f"V(c) <0, so
f(z) > f(a) if n is even, f(z) < f(a) if n is odd. For z € (a,a + €), we have f™Y(¢c) > 0,
so f(z) > f(a) for all n. This implies that f has a local minimum at a if n is even. If n is
odd, it implies that either f has no local extremum, or f is constant on (a —€,a + €). But
the latter possibility contradicts the assumption that f (”)(a) > 0.

= f™(a) > 0.

6A. For every positive integer n, define [n], = ¢"~*+¢" 2+ - -+¢+1. Prove that [1],[2],- - - [r],
divides [k + 1] [k + 2], - - [k + 7], in the polynomial ring Z|g], for all positive integers k and
T.

Solution: Both polynomials are monic, so we need only show that every complex root w
of [1],4[2], - - - [r]4 is also a root of [1],[2], - - - [r],, with equal or greater multiplicity.

The roots of [n], = (¢ —1)/(q — 1) are the n-th roots of unity, excluding 1, and they are
distinct. In particular, every root w of [1],[2],- - - [r], is a root of unity. Let d be the order of

w in the multiplicative group C*, that is, w is a primitive d-th root of unity. Then w is a root
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of [n], if and only if d | n. It follows that w has multiplicity |r/d] as a root of [1],4[2], - [r]4,
and multiplicity |(k+r)/d] —|k/d] as a root of [k +1],[k + 2|, - - [k + 7], To complete the
proof, we need the following inequality.

Lemma. |(k+71)/d] > |k/d]| + [r/d] for all k, r, d.

Proof. Set a = |k/d], b = |r/d|. Then k > ad, r > bd, hence k +r > (a + b)d and
|(k+r)/d| > [(a+b)d/d] = a+ b, since the floor function is monotone.

(An alternative proof is to show by induction that the Gauss binomial coefficient

{ k+r } _: [k + 1glk +2]g-- - [k + 7]
LA ' [1g[2]g - - [rlq

is a polynomial, by using a g-analog of the Pascal’s triangle recurrence.)

7A. Let U be a connected open subset of C, and let f(z) be a meromorphic function on U
having at least one pole. For each ¢ € U that is not a pole of f, let R(c) be the radius of
convergence of the Taylor series of f centered at c. Prove that R(c) extends to a continuous
function defined on all of U.

Solution: Let P be the set of poles of f in U. Each pole is isolated, so P is closed in U, and
U—Pisopen (bothin U and in C). Forc € Cand r > 0, let D(¢,r) :={z € C: |z—c| < r}.

Fix ¢ € U — P. Choose € > 0 such that D(c,e) C U — P. Then ¢ < R(c), and the
function g. on D(c, R(c)) defined by the Taylor series at ¢ agrees with f on D(c,¢€). Note
that R(c) < oo, since otherwise by connectedness f would equal the restriction to U of
an entire function g., contradicting the fact that f has a pole. If ¢ € D(c,€/2), then
{¢,d} € D(d,e/2) C D(c,€), so the restrictions of g. and the analogous function g. to
D(c,€/2) each agree with the restriction of f. Thus g., g, f have the same Taylor series
centered at ¢, and they have the same Taylor series centered at ¢’. The restriction of g,
to D(¢, R(c) — |c — ¢|) € D(c, R(c)) is holomorphic, so R(c) > R(c) — |¢ — ¢|. Similarly
R(c) > R(d) — |c =], so |R(c) — R(¢)| < |e — ¢|. Thus R is continuous at c.

Suppose p € P. We may choose ¢ > 0 such that D(p,e) — {p} € U — P. For ¢ €
D(p, €/2) — {p}, the restriction of g. to D(c, |c — p|) agrees with f, and g.(z) — oo as z —p
within D(c,|c — pl|), so R(c) = |¢c — p|. Thus defining R(p) = 0 at each p € P gives an
extension of R to a continuous function on U.

Remark: It is not true that R(c) equals the distance from ¢ to the complement of U —
{poles of f} in C, even if f does not extend to a larger open subset of C. For example, if f
is the standard branch of % on C — Reg, then R(—1414) = /2, not 1.

The correct statement is that if ¢ € U is not a pole, then R(c) equals the radius of the
largest open disk on which there is some holomorphic function that agrees with f on some

open neighborhood of c.

8A. Let C' and D be two n x n positive definite Hermitian matrices over C and let A = C'D.
Prove that all eigenvalues of A are positive real numbers.

Solution: Let Az = Az, © # 0. Then CDzxz = Ax. Since D is positive definite, it is

invertible, so Dz # 0. Let B denote the conjugate transpose of a matrix (or column
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vector) B. Since C' is positive definite,
0 < (Dx,C(Dx)) = (Dx)?C(Dz) = (Dx)¥ Az = X\ Dz = \a" D,

since D is Hermitian. But 7 Dz > 0 since D is positive definite. Dividing, we get A > 0.

9A. Let f: R? — R be an infinitely differentiable function that is zero outside some bounded

subset of R?. Prove that
lim / / L‘y)S dx dy
=0 z24y2>e? (I’ + 'Ly)

Solution: The answer is positive. We must prove that

lim // M dedy =0
0,e—0 52<x24y2<e2 (I + ’Ly)3

f(z,y) =a+bx+cy+O(* +y?)
and consider each of the three terms. For the last one we note that
x? + y2
|z + iy|3
which is integrable at zero. For the constant we compute

1 2 )
// Yz dvdy = / / r2e 30 drdh =0
§2<x?+y?<e? (I + Zy) 0 f<r<e

For f(x,y) =y we have

2
// L?) dedy = / / r~Lcosf e 3 dr df
2<r24y2<e? (I + Zy) 0 f<r<e

27
(Ine —In o) / e 20 4 e~ q9
0

exists.

We write

1
2

= (z*+9°)

1
2
= 0

The case f(x,y) = x is similar by symmetry. This concludes the proof.

1B. Let G be a finite group. Suppose ab = ba holds whenever a,b € G have prime power
order. Prove that GG is abelian.

Solution: Let z,y € GG. By the Chinese Remainder Theorem, the finite cyclic group gener-
ated by x is a product of cyclic groups of prime power order, so we can write r = 125+ - T,
where each x; has prime power order. Write y = 1,y - - -y, similarly. By assumption x;
commutes with each y;, so x; commutes with their product y. Similarly x; commutes with
y for each i, so their product x commutes with y.

2B. Prove that, for any € > 0, the function f(z) = sinz + Z%LZ has infinitely many zeros in
the strip |Im z| < e.

Solution: We use Rouché’s theorem. Without loss of generality, assume € < 7. Let d be

the minimum value of |sin z| on the compact set |z| = €. Since the zeros of sinz in C are
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the integer multiples of 7, we have 0 > 0. By periodicity, we have |sinz| > ¢ also on the
circle C,, defined by |z —2wn| = ¢ for any n € Z. On the other hand, if n is sufficiently large,
then |==| < 0 on C,. For such n, Rouché’s theorem implies that f(z) has the same number
of zeros as sin z inside C,,, namely 1. Letting n vary, we find infinitely many zeros of f(z)
inside the strip.

3B. Let M, (F) be the ring of n X n matrices over a field F'. Prove that for every A € M,,(F)
there exists X € M, (F) such that AXA = A.

Solution: Let ¢: F™ — F™ be the linear transformation defined by A. Let W = ker ¢,
and let V' C F™ be a complementary subspace, such that F =W @& V. Let U = im ¢. Note
that dimU = dimV = rankA. The restriction ¢ of ¢ to V is injective, hence ¢: V — U is
an isomorphism. Let ¢: U — V be its inverse, and let 1) be any extension of ¢ from U to

all of F™. Take X to be the matrix of 1. Then for every vector v in the column space U of
A, we have AXv = ¢ypv = v, which implies AXA = A.

4B. Let D be a subset of R, and let f: D — R be a function. The graph of f is the subset
G:=A{(z,y):zeD, y=flx)}

of R2. Prove that if G is compact, then f is continuous.

Solution: It suffices to prove that f~!(C) is closed in D for every closed subset C' of R. Let
71, T be the coordinate projections R? — R. Then m; *(C) is closed in R2. Thus 7, '(C)NG
is closed in G and hence compact. Now f~1(C) = 7 (75 '(C) N G) is the continuous image

of a compact set, so it is compact. Thus f~!(C) is closed in R, hence closed in D.

5B. Let Q(z) be the field of rational functions in one variable over Q. Let i: Q(z) — Q(z)

be the unique field automorphism such that i(z) = x~!. Prove that the fixed subfield

{r e Q(x) :i(r) = r} is equal to Q(z + z71).

Solution: Let F' denote the fixed subfield, and set y = x + z~'. Obviously Q(y) C F #
Q(z). The equation 2> — yz + 1 = 0 shows that Q(z) is an algebraic extension of Q(y),
and [Q(x) : Q(y)] = 2. Since the intermediate field F' is not equal to Q(z), we must have

F =Q(y).

oo :
rsinx
——— dx, where a > 0.

6B. Evaluate the integral / 5
0o T°+a

Solution: Let I be the desired integral. Then

1 [ zsinz
I = = —d
2/_Oox2+a2 v

i R rsinx
= — lim ——dx
2 R—oo |_p a2 + a?
. R xeix
= — lim Im —dx.
2R—>OO —R $2+6L2
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Integrate — +a2 counterclockwise around the curve —R < z < R, z = Re'?, 0 < 6 < 7, where
R > a.
The residue of the integrand at z = 1a is
ae” e
2ia 2

Moreover, by “Jordan’s lemma”, the integral over the semicircular part of the curve tends
to 0 as R — oo.

Therefore I = 5 - Im(2mie™*/2) = T~

—a

7B. Let F,, be the field of p elements. Let SLy(F,) be the group of 2 x 2 matrices over F,, of
determinant 1. Let G be a normal subgroup of SLy(F,). Suppose G contains a non-identity
element ~ that fixes a nonzero vector v. Show that any 7' € SLy(F,) that fixes a nonzero
vector v’ belongs to G.

Solution: For each vector u, let S, be the set of elements of SLy(IF,) that fix w. First, we
can complete {v} to a basis {v,w}. With respect to this basis, the matrix of 7 is upper-
triangular and hence is

1 =z
(o 1)

for some z # 0. Then S, (where now v = (é)) consists of the powers % = ((1) klx)’ SO
S, C G.

Now suppose v := (Ccl) € Ff) \ 0. Then we can find b,d € F, so that ad — bc = 1 (take
d=0and c=—1/bor c=0and d =1/a). Thus

p= (2 ) estalF,)

satisfies pv = v'. Now S, = pS,p~! C pGp~! = G, which is what we needed to show.

Remark: Many students confused SLy(F,)-conjugacy with similarity, which is GLo(F,)-
conjugacy.

8B. Let f: R — R be differentiable on R. Suppose that f(0) = 0, and that |f'(x)| < |f(z)]
for all x € R. Prove that f(z) =0 for all z € R.

Solution: Let us show that f(z) =0 for all x € [0,1]. Let a = max{|f(x)|: x € [0,1]}. We
have to show that a = 0. Suppose on the contrary a > 0. Let £ = {x € [0,1] : |f(z)| = a}.
Then F is closed and o = inf £ € F,| ie., [f(a)] =a >0 = «a > 0since f(0) = 0. Thus
0<a<land|f(c)| <a(x)forall0 <c < a. Wehavea = |f(a)| = |f(a)—f(0)| = |f'(c)|-«
(for some ¢ € (0,«) by the Mean Value Theorem) < |f(c)| - a < |f(c)| (since 0 < o < 1).
This contradicts (x). Thus f =0 on [0, 1]. In particular, f(1) = 0 and we can use the same
argument to show f =0 on [1,2] and on every [n,n+ 1], n = +1,+2,....

+z) w

(
x)—()}

Alternative solution: Suppose f(x) is not identically zero. Replacing f(z

)
may assume that there exists b > 0 such that f(b) > 0. Let a = sup{z € [0,
6
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Thus f is positive on (a,b). So f' < f on (a,b). Thus the derivative of g = e *f is < 0 on
(a,b). This contradicts g(a) =0 < g(b).

9B. (a) Prove that if n > 0 is even, there does not exist f(z) € R[x] such that f(z)* — x is
divisible by 2™ — 1.

(b) For odd n > 0, find the number of f(z) € R[z| of degree < n such that f(z)* — z is
divisible by 2™ — 1.

Solution: (a) If f(z)* — x is divisible by ™ — 1, it is divisible by the factor = + 1, so
f(=1)?> — (=1) = 0. This is impossible since f(—1) € R.

(b) Equivalently, we must count the square roots of the image of x in Rlz|/(z™ —1). If n
is odd, only one zero of 2™ — 1 is real, so 2™ — 1 = (z — 1) H w2 fj(x) where f;(z) € Rx]
is irreducible of degree 2. Moreover, the factors are distinct smce x™ — 1 shares no zeros
with its derivative nz™~!. By the Chinese Remainder Theorem

R[f]f] (n—1)/2 —-1)/2

e
(z—1) H (fi(z) H

Jj=1 =1

Rlz]/(z™ — 1) =~

To choose a square root of the image of z is equivalent to Choosmg a square of the image
of x in each factor. The image of x in the factor R is 1, and the image in each factor C
is nonzero (since x has an inverse in R[z]/(z" — 1), namely 2"~1), so there are 2 choices of
square root in each of the (n + 1)/2 factors. Thus the answer is 2(*+1)/2,

Alternative solution to (b): By Lagrange interpolation, a polynomial f(z) € Clz] of degree
< n is uniquely specified by its values at the n-th roots of unity. Such a specification gives
a polynomial with real coefficients if and only if the prescribed values at complex conjugate
roots of unity are complex conjugates. Now f(z)?—z is divisible by ™ —1 if and only if f(w)
is a square root of w for each n-th root of unity w. We can construct such f by prescribing
f(1) = £1 and f(w) for each n-th root of unity in the upper half plane, but then we must
choose f(w) = f(w). There are (n — 1)/2 n-th roots of unity in the upper half plane, so we
have 1+ (n —1)/2 = (n + 1)/2 sign choices. Thus there are 2("*1)/2 possibilities for f.



