
SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

1A. Let G be the subgroup of the free abelian group Z4 consisting of all integer vectors
(x, y, z, w) such that 2x + 3y + 5z + 7w = 0.

(a) Determine a linearly independent subset of G which generates G as an abelian group.
(b) Show that Z4/G is a free abelian group and determine its rank.

Solution:
(b) The linear map

Z4 7→ Z, (x, y, z, w) 7→ 2x + 3y + 5z + 7w

has kernel G, and is onto because 2 and 3 are relatively prime. Hence Z4/G is isomorphic
to the image Z, which is a free abelian group of rank 1.

(a) There is a sequence of elementary column operations over Z (not involving divisions)
that transforms the 1 × 4-matrix

(
2 3 5 7

)
into

(
0 0 0 1

)
. For instance, subtract 3

times the first column from the fourth to get
(
2 3 5 1

)
, and then subtract appropriate

multiples of the fourth from each of the first three columns to make them zero. The same
sequence of operations applied to the 4× 4 identity matrix eventually yields a matrix

U =


7 9 15 −3
0 1 0 0
0 0 1 0
−2 −3 −5 1


such that (

2 3 5 7
)
U =

(
0 0 0 1

)
.

Because of the way U was constructed, it has an inverse U−1 with integer entries.
The first three columns of U are in G, and we claim that they span G as an abelian group.

Suppose v ∈ G. Then

0 =
(
2 3 5 7

)
v =

(
0 0 0 1

)
U−1v,

so U−1v =


α
β
γ
0

 for some α, β, γ ∈ Z. Thus

v = U


α
β
γ
0

 ,

which is an integer combination of the first three columns of U .
Finally these first three columns of U are linearly independent, since U is invertible.
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2A. Find (with proof) all real numbers c such that the differential equation with boundary
conditions

f ′′ − cf ′ + 16f = 0, f(0) = f(1) = 1

has no solution.

Solution: First suppose that the characteristic equation x2 − cx + 16 = 0 has a repeated
root. This happens when c = ±8. If c = 8, the repeated root is 4, and the general solution
to the differential equation without boundary conditions has the form

f(t) = (at + b)e4t.

The boundary conditions impose

b = 1

(a + b)e4 = 1,

and this system has a solution. Similarly, there is a solution in the case c = −8.
From now on, we suppose that the complex roots α, β of x2 − cx + 16 = 0 are distinct.

Then the general solution is
f(t) = aeαt + beβt,

where a, b ∈ C, and the boundary conditions impose

a + b = 1(1)

aeα + beβ = 1.

This system is guaranteed to have a solution if eα 6= eβ. So assume eα = eβ. Then α− β =
2πik for some k ∈ Z. By interchanging α, β, we may assume k > 0. On the other hand, by
the quadratic formula,

(α− β)2 = c2 − 64.

Thus 4π2k2 = 64− c2 ≤ 64. The only possibility is k = 1, which leads to c = ±
√

64− 4π2.
In this case eα = eβ, but the common value is not 1, since eαeβ = eα+β = ec 6= e0 = 1. So
the system (1) has no solution.

Thus the set of values c for which the differential equation with boundary conditions has
no solution is {±

√
64− 4π2}.

3A. Let S = {(x1, . . . , xn) ∈ Rn | x1+· · ·+xn = 0}. Find (with justification) the n×n matrix
P of the orthogonal projection from Rn onto S. That is, P has image S, and P 2 = P = P T .

Solution: The orthogonal complement of S is one-dimensional, and spanned by the unit
vector w = 1√

n
(1, . . . , 1), because v ∈ S ⇔ 〈v, w〉 = 0. So the orthogonal projection is given

by Pv = v − 〈v, w〉w = v − v1+···+vn

n
(1, . . . , 1). Therefore

P = Id−wT w =


n−1

n
−1
n

· · · −1
n−1

n
n−1

n
· · · −1

n
...

. . .
...

−1
n

−1
n

· · · n−1
n

 .

4A. Let D = {z ∈ C : |z| < 1}. Find all holomorphic functions f : D → C such that
f( 1

n
+ ie−n) is real for all integers n ≥ 2.
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Solution: We show that the only such functions are the real constant functions. Let

f(z) =
∑

anz
n

be the Taylor series for f around 0. We first prove by contradiction that ak are real. Suppose
that k is the smallest index so that Imak 6= 0. Then we must have

Imak = lim
x→0,x∈R

x−kImf(x)

On the other hand, because there is a bound on f ′(z) in a closed disk containing all the
numbers 1

n
+ ie−n,

Imf(
1

n
) = Imf(

1

n
+ ie−n) + O(e−n) = O(e−n)

as n →∞. Hence

Im ak = lim
n→∞

nkImf(
1

n
) = 0,

which is a contradiction. As a consequence, f( 1
n
) must be real.

By bounding f ′′(z) on a closed disk, we may write

f(
1

n
+ ie−n) = f(

1

n
) + ie−nf ′(

1

n
) + O(e−2n)

Taking imaginary parts we get

Ref ′(
1

n
) = O(e−n)

Arguing as above, the Taylor series at 0 for f ′(z) has purely imaginary coefficients. We
conclude that all ak’s must vanish with the exception of a0.

5A. Consider the following four commutative rings:

Z, Z[x], R[x], R[x, y].

Which of these rings contains a nonzero prime ideal that is not a maximal ideal?

Solution: In the ring of integers Z the nonzero prime ideals are 〈p〉, where p is a prime
number. Each of these ideals is maximal since Fp = Z/〈p〉 is a field. Hence every nonzero
prime ideal in Z is maximal.

The polynomial ring Z[x] in one variable x over the ring of integers Z is not a principal ideal
domain. For instance, 〈2, x〉 is not a principal ideal; it strictly contains the ideal 〈2〉, which
is therefore not a maximal ideal. The ideal 〈2〉 is a prime ideal, because Z[x]/〈2〉 = F2[x] is
a polynomial ring over a field, and hence an integral domain. Hence 〈2〉 is a nonzero prime
ideal in Z[x] which is not maximal.

The polynomial ring R[x] in one variable x over the field R is a principal ideal domain.
Hence every nonzero ideal has the form 〈f(x)〉 where f(x) is a nonzero polynomial with real
coefficients. The ideal is prime if and only if f(x) is an irreducible polynomial, i.e., if f(x)
is a linear polynomial or f(x) is a quadratic polynomial with no real roots. In either case,
the quotient R[x]/〈f〉 is a field, namely, either R or C, which means that 〈f〉 is a maximal
ideal. Hence every nonzero prime ideal in R[x] is a maximal ideal.

The polynomial ring R[x, y] in two variables x, y over R has many nonzero prime ideals
which are not maximal ideals. For instance, 〈x〉 is a prime ideal, but it is not maximal since
it is contained in the ideal 〈x, y〉.
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6A. Let u : R → R be a function for which there exists B > 0 such that
N−1∑
k=1

|u(xk+1)− u(xk)|2 ≤ B

for all finite increasing sequences x1 < x2 < · · · < xN . Show that u has at most countably
many discontinuities.

Solution: Let A be the set of points of discontinuity for u. Then

A =
⋃
n≥1

An

where

An = {x ∈ R : | lim sup
y→x

u(y)− lim inf
y→x

u(y)| > 1

n
}

To prove that A is countable, we will prove that

|An| ≤ 4n2B.

If y1 < y2 < · · · < yN are in An then we can choose a strictly increasing sequence (xk)
2N
k=1

such that
x2k−1 < yk < x2k

and

|u(x2k)− u(x2k−1)| >
1

2n
for k = 1, . . . , N . Summing over k gives the inequality on the right in

B ≥
2N−1∑
k=1

|u(xk+1)− u(xk)|2 ≥
N∑

k=1

|u(x2k)− u(x2k−1)|2 ≥ N

(
1

2n

)2

.

Hence N ≤ 4n2B, which concludes the proof.

7A. Recall that SL(2, R) denotes the group of real 2× 2 matrices of determinant 1. Suppose
that A ∈ SL(2, R) does not have a real eigenvalue. Show that there exists B ∈ SL(2, R) such

that BAB−1 equals a rotation matrix

(
cos θ − sin θ
sin θ cos θ

)
for some θ ∈ R.

Solution: Since the eigenvalues of A are solutions to a real quadratic equation, they are
complex conjugates of each other, call them λ and λ. Since det(A) = 1, it follows that
λλ = 1, i.e. λ and λ are on the unit circle. Write λ = cos θ + i sin θ. Pick a nonzero
eigenvector z ∈ C2 with Az = λz. Write z = v + iw with v, w ∈ R2. Taking the real
and imaginary parts of the equation Az = λz gives the equations Av = (cos θ)v − (sin θ)w,
Aw = (sin θ)v + (cos θ)w. Note also that A(v − iw) = λ(v − iw) and λ 6= λ, so v + iw and
v− iw are linearly independent over C, so v and w are linearly independent over R. We can
find B ∈ SL(2, R) taking the basis {v, w} to a real multiple of the standard basis for R2.

Then BAB−1 =

(
cos θ sin θ
− sin θ cos θ

)
. This is of the desired form, with θ in place of −θ.

8A. Let D = {z ∈ C : |z| < 1}. Let f : D → C be holomorphic, and suppose that the
restriction of f to D − {0} is injective. Prove that f is injective.
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Solution: Suppose on the contrary that there is a ∈ D − {0} such that f(a) = f(0). Let
α be the common value. Choose disjoint open disks D0 and Da contained in D, centered at
0 and a, respectively. By the Open Mapping Theorem f(D0) and f(Da) are open subsets of
C containing α. Hence G := f(D0) ∩ f(Da) is a nonempty open subset of C. Choose ξ ∈ G
with ξ 6= α. Then there exist z0 ∈ D0 and za ∈ Da such that f(z0) = f(za) = ξ. Since
ξ 6= α, neither z0 nor za is 0. This contradicts the injectivity of f restricted to D − {0}.

9A. Let p be a prime. Let G be a finite non-cyclic group of order pm for some m. Prove that
G has at least p + 3 subgroups.

Solution: We will use the following two facts:

(i) A nontrivial p-group has a nontrivial center Z (nontrivial conjugacy classes have size
divisible by p, as does the whole group, so {1} cannot be the only trivial one).

(ii) If G is a group with center Z, and G/Z is cyclic, then G is abelian (since if a ∈ G
generates G/Z, every element of G is of the form anz for some n ∈ Z and z ∈ Z).

We use induction on m.
Suppose m ≤ 2. Since G has order 1, p, or p2, it is abelian (for order p2, combine (i)

and (ii) above). Since it is not cyclic, we have G ' Z/pZ × Z/pZ. So G has one trivial
subgroup, (p2 − 1)/(p − 1) = p + 1 subgroups of order p, and G itself. Thus G has exactly
p + 3 subgroups.

Now suppose m > 2. By (i), the center Z of G is nontrivial. Since G is a nontrivial
p-group, it has a nontrivial center Z. If G/Z is non-cyclic, then by the inductive hypothesis
it has ≥ p + 3 subgroups, and their inverse images in G are distinct subgroups of G. If G/Z
is cyclic, then G is abelian by (ii); but G is not cyclic, so by the structure theory of finite
abelian groups, it must contain Z/pZ× Z/pZ, which already contains p + 3 subgroups.

1B. Let A1 ⊇ A2 ⊇ · · · be compact connected subsets of Rn. Show that the set A =
⋂

Am

is connected.

Solution: The intersection A is nonempty, since otherwise {A1 − Am} is a covering of A1

(by sets open in A1) with no finite subcover.
Suppose that A is not connected. Then there exist sets B0, C0 open in A such that

B0 ∪C0 = A and B0 ∩C0 = ∅. Then B0, C0 are also closed in A, which (as an intersection of
closed sets) is closed in Rn, so B0, C0 are closed in Rn. Hence we can find disjoint sets B, C
open in A1 such that B0 ⊆ B, C0 ⊆ C: for instance, we could let B be the set of points in
A1 that are strictly closer to B0 than to C0, and vice versa for C.

Since A = B0∪C0 ⊆ B∪C, the sets B, C, and A1−Am for m ≥ 1 form a cover of A1 by sets
open in A1; thus there is a finite subcover consisting of B, C, and A1−Am for m = 1, . . . , r.
So r is such that Ar ⊆ B ∪ C. Since B, C are open, disjoint, and B ∩Ar ⊇ B0 ∩A 6= ∅ and
C ∩ Ar ⊇ C0 ∩ A 6= ∅, we have that Ar is not connected, a contradiction.

2B. Let F2 be the field of 2 elements. Let n be a prime. Show that there are exactly (2n−2)/n
degree-n irreducible polynomials in F2[x].

Solution: There is a unique field extension F2n of degree n over F2. It is Galois over F2

(this is because it is a splitting field for the separable polynomial x2n − x). If a ∈ F2n − F2,
then F2(a) is a subfield of F2n of degree dividing n but not equal to 1, so F2(a) = F2n . Hence
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the minimal polynomial fa of a over F2 is an irreducible polynomial of degree n over F2.
Thus we have a map

(F2n − F2) → {degree-n irreducible polynomials in F2[x]}
a 7→ fa.

On the other hand, if f ∈ F2[x] is any degree-n irreducible polynomial, then f has a zero
in F2n (since F2n is the unique degree-n extension of F2) and it follows that f has n distinct
zeros in F2n (since F2n is Galois over F2). Moreover, f is automatically monic (the only
nonzero element of F2 is 1) so it is the minimal polynomial of each of its zeros. Thus our
map is n-to-1.

Its domain has size 2n − 2, so its range has size (2n − 2)/n.

3B. Evaluate the integral ∫ ∞

−∞

eitx

ex + e−x
dx

for t > 0.

Solution: The integral converges absolutely, since the numerator has absolute value 1,
while the denominator decays exponentially in both directions.

Use a rectangular contour C bounded by x = R, x = −R, y = 0 and y = π. As R → ∞
the integrals along the vertical parts of the contour tend to 0, since∣∣∣∣∫ π

0

eit(R+iy)

eR+iy + e−R−iy
dy

∣∣∣∣ ≤ ∫ π

0

1

eR − e−R
dy =

π

eR − e−R
.

The integral along the horizontal path y = π equals∫ −R

R

eit(x+πi)

e(x+πi) + e−(x+πi)
dx =

∫ −R

R

e−πteitx

−ex − e−x
dx = e−πt

∫ R

−R

eitx

ex + e−x
dx.

Let I denote the integral we have to find. Then

lim
R→∞

∮
C

eitz

ez + e−z
dz =

(
1 + e−πt

)
I.

On the other hand, ∮
C

eitz

ez + e−z
dz = 2πi Resπi

2
,

since the only singular point inside the contour is πi
2
. Now

Resπi
2

=
e−

πt
2

2i
,

so ∮
C

eitz

ez + e−z
dz = πe−

πt
2 ,

I = π
e−

πt
2

1 + e−πt
=

π

e
πt
2 + e−

πt
2

.

6



4B. Let n be a positive integer, and let GLn(R) be the group of invertible n × n matrices.
Let S be the set of A ∈ GLn(R) such that A − I has rank ≤ 2. Prove that S generates
GLn(R) as a group.

Solution: By Gaussian elimination, GLn(R) is generated by the elementary matrices ob-
tained from the identity matrix by interchanging two rows, by multiplying one row by a
nonzero scalar, or by adding a multiple of one row to a different row. For each such matrix
A, the matrix A− I has at most two nonzero rows and hence has rank ≤ 2.

5B. Prove that there exists no continuous bijection from (0, 1) to [0, 1]. (Recall that a
bijection is a map that is both one-to-one and onto.)

Solution: Suppose on the contrary that there exists a continuous bijection f : (0, 1) →
[0, 1]. Then there exists x ∈ (0, 1) such that f(x) = 0. Let A = (0, x), B = (x, 1). We have
A ∩B = ∅ and since f is injective we have

f(A) ∩ f(B) = f(A ∩B) = ∅. (∗)
Since f is continuous and (0, x] is connected, f((0, x]) contains an interval [0, a) for some
a > 0. Hence f(A) contains (0, a). Similarly, f(B) contains (0, b) for some b > 0. This gives
f(A) ∩ f(B) 6= ∅. Contradiction to (∗).

6B. Let A be the subring of R[t] consisting of polynomials f(t) such that f ′(0) = 0. Is A a
principal ideal domain?

Solution: No. Suppose A is a principal ideal domain. Then the A-ideal I generated by
t2 and t3 would be principal. Let p(t) be a generator of I. Then t2 = q(t)p(t) for some
q(t) ∈ A, so p(t) divides t2 also in the unique factorization domain R[t]. Hence p(t) = utm

for some unit u of R[t] and some m ∈ {0, 1, 2}. The case m = 1 is impossible, since p(t) ∈ A.
If m = 0, then p(t) is a unit also of A, and hence generates the unit ideal; this contradicts
the fact that every element of I has constant term zero. If m = 2, then t3 is not a multiple
of p(t), since the element t3/p(t) ∈ R[t] is not in A.

7B. Let m be a fixed positive integer.
(a) Show that if an entire function f : C → C satisfies |f(z)| ≤ e|z| for all z ∈ C, then

|f (m)(0)| ≤ m!em

mm
.

(b) Prove that there exists an entire function f such that |f(z)| ≤ e|z| for all z and

|f (m)(0)| = m!em

mm
.

Solution:
(a) Write f(z) =

∑
n≥0 anz

n with an ∈ C. Then am is the coefficient of z−1 in the Laurent

series of f(z)/zm+1, so

am =
1

2πi

∫
|z|=R

f(z)

zm

dz

z
,
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for any R > 0, and we get

|am| ≤
1

2π

(
eR

Rm

)
2πR

R
=

eR

Rm
.

Taking R = m (which calculus shows minimizes the right hand side) and multiplying by m!
gives

|f (m)(0)| = |m!am| ≤
m!em

mm
.

(b) Examining the proof of part (a) shows also that in order to have equality, f(z)
zm must

have constant modulus em/mm and constant argument on the circle |z| = m. Thus we guess
f(z) = em

mm zm, and it remains to prove that |f(z)| ≤ e|z| for all z ∈ C. Equivalently, we must
show that the minimum value of ex/xm on (0,∞) is em/mm. This can be seen by observing
that the only zero of the derivative of log(ex/xm) = x−m log x is at x = m, while the second
derivative is positive everywhere (it is m/x2).

8B. Let 〈 , 〉 be the standard Hermitian inner product on Cn. Let A be an n × n matrix
with complex entries. Suppose 〈x, Ax〉 is real for all x ∈ Cn. Prove that A is Hermitian.

Solution: We have 〈x, Ax〉 = xHAx = xHAx (since xHAx is real) = (xHAx)H = xHAHx.
Thus xHAx = xHAHx. So xH(A− AH)x = 0 for all x ∈ Cn. Let B = A− AH . We have

xHBx = 0 (∗)

for all x ∈ Cn and BH = AH − A = −B, so B is skew-Hermitian (hence normal). Let
x be an eigenvector of B with the eigenvalue λ, so Bx = λx. Then 0 = xHBx (by (∗))
= λxHx = λ‖x‖2. This gives λ = 0. Thus all eigenvalues of B are zero. Being normal, B is
diagonalizable, so B = 0. By definition of B, we get A = AH . Thus A is Hermitian.

9B. Find a bounded non-convergent sequence of real numbers (an)n≥1 such that

|2an − an−1 − an+1| ≤ n−2

for all n ≥ 2.
Solution: We will let an = f(n), where f(x) is a function similar to the sine function but

with oscillations that slow down as x →∞, so that f ′′(x) → 0. To be precise, we take

f(x) :=
1

2
sin(ln(x + 1)).

This sequence is bounded. It also does not converge, since the spacing between values of ln n
tends to zero, which means that the values of (ln n) mod (2π) are dense in [0, 2π].

By Taylor’s theorem with remainder (centered at n),

f(n + 1) = f(n) + f ′(n) +
1

2
f ′′(ξ+) for some ξ+ ∈ (n, n + 1), and

f(n− 1) = f(n)− f ′(n) +
1

2
f ′′(ξ−) for some ξ− ∈ (n− 1, n), so,

|2f(n)− f(n− 1)− f(n + 1)| = 1

2
|f ′′(ξ+) + f ′′(ξ−)| = |f ′′(ξ)| for some ξ ∈ (ξ−, ξ+) ⊆ (n− 1, n + 1)
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by the intermediate value theorem. We compute

f ′(x) =
1

2(x + 1)
cos(ln(x + 1))

f ′′(x) = − 1

2(x + 1)2
(cos(ln(x + 1)) + sin(ln(x + 1))) ,

|f ′′(x)| ≤ 1

(x + 1)2

|f ′′(ξ)| ≤ 1

(ξ + 1)2
≤ 1

n2
.

so
|2an − an−1 − an+1| = |f ′′(ξ)| ≤ n−2.

9


