
SPRING 2008 PRELIMINARY EXAMINATION

1A. Prove that it is not possible to find two linear operators A and B on a non-zero finite
dimensional complex vector space with AB−BA = I, where I is the identity operator. Give
an example of two such operators acting on an infinite dimensional complex vector space.

Solution: Tr(AB − BA) = 0 6= Tr(I). The operators A = d/dx and B = x acting on the
ring of polynomials satisfy AB −BA = I.

2A. Evaluate ∫ +∞

−∞

cos(x)

1 + x2
dx

Solution. The integral is unaffected if we replace cos(x) by eix. By the residue theorem
the integral is equal to 2πi times the sum of the residues in the upper half plane (as eix is
small there). The only residue is at x = i, where the residue is 1/2ie. So the integral is
π/2e.

3A. Find (without proof) the number of subgroups of each possible order of the symmetric
group S4 of all permutations of 4 points.

Solution: The order of the subgroup has to divide 24. Check each possible order. There
is 1 (trivial) subgroup of order 1, 6 (type 2) +3 (type 22) of order 2, 4 of order 3 (cyclic),
3 (cyclic) +1 (normal 4-group) +3 (non-normal 4-group) of order 4, 4 of order 6 (fixing a
point), 3 of order 8 (Sylow subgroups), 1 of order 12 (alternating group), and 1 of order 24
(whole group).

4A. Find the solution of the differential equation

y′′ − 2y′ + y = e−x

satisfying y(0) = y′(0) = 0.
Solution: y = e−x/4 + aex + bxex is the general solution. y(0) = 0 forces a = −1/4, and

y′(0) = 0 then forces b = 1/2.

5A. Suppose M is an n× n nilpotent matrix over C. Show the set of matrices C(M) which
commute with M is the ring C[M ] if and only if the null space of M has dimension one.

Solution.
Let V = Cn. The ring C[M ] is a vector space spanned by 1,M, . . . ,Mn−1, because

Mn−1 = 0. Put M in Jordan form

M1

. . .

Mr
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(Mj is an sj × sj matrix with 0’s on the diagonal and 1’s on the supradiagonal). The
dimension of the nullspace of M is r.

Suppose r = dim(Null (M)) = 1. It follows that there is a vector v ∈ V such that
v,Mv, . . . ,Mn−1v is a basis for V . Suppose A commutes with M and Av =

∑n−1
i=0 ai(M

iv).
Claim:

A =
n−1∑
i=0

aiM
i.

Indeed,

A(M jv) = M j(Av) =
n−1∑
i=0

ai(M
i+jv) = (

n−1∑
i=0

aiM
i)(M jv),

and so A ∈ C[M ].
On the other hand, the n matrices

δi 1M
k1
1

. . .

δi rM
kr
r

where 1 ≤ i ≤ r and 0 ≤ ki < si are linearly independent and commute with M . It follows
that if C(M) = C[M ], Mn−1 6= 0 so 1 = r = dim(Null (M)).

6A. Suppose G is a finite group with only one automorphism. Show |G| ≤ 2.
Solution:
Since h ∈ G→ ghg−1 is an automorphism for g ∈ G, G must be abelian. Then h ∈ G→ hk

is an automorphism for (k, |G|) = 1. Thus hk = h for (k, |G|) = 1. In particular, h = h−1

for h ∈ G. Thus G = (Z/2Z)r for some r ≥ 0. If r > 1, (x1, x2, . . . , xr)→ (x2, x1, . . . , xr) is
a non-trivial automorphism. Thus r ≤ 1.

7A. Find all irreducible polynomials of degree at most 4 over the field with 2 elements.
Solution: Using the sieve of Eratosthenes we find x, x + 1 of degree 1. Therefore higher

degree irreducible polynomials must have constant term 1 and sum of coefficients 1. This
gives the irreducible polynomials x2 + x + 1, x3 + x + 1, x3 + x2 + 1 in degrees 2 and 3.
In degree 4 we also have to eliminate polynomials divisible by x2 + x + 1; the only extra
possibility eliminated by this is (x2 + x + 1)2 = x4 + x2 + 1. So in degree 4 the irreducible
polynomials are x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1.

8A. Let p, q be distinct prime numbers and let R be a commutative ring with 1 of char-
acteristic pq. Show there are rings S, T of characteristic p, q respectively, such that R is
isomorphic to S×T .

Solution:
p and q are relatively prime, so there are integers m,n such that 1 = mp+ nq.

2



pR and qR are ideals of R. Let S = R/pR and T = R/qR. So in S p = 0; since R does
not have characteristic q, 1 6∈ pR (since otherwise q ∈ qpR = (0)); thus S has characteristic
exactly p. Similarly T has characteristic q.

There are onto homomorphisms f : R → S and g : R → T given by f(a) = a + pR and
g(a) = a+ qR. So there is a homomorphism h : R→ S×T given by h(a) =< f(a), g(a) >.

If a is in the kernel of h then a ∈ (pR ∩ qR) so a = 1a = mpa+ nqa ∈ pqR = (0). Thus h
is 1− 1.

Notice f(mp) = 0S and g(mp) = g(1 − nq) = 1T while f(nq) = f(1 − mp) = 1S and
g(nq) = 0T . So given a, b ∈ R let c = anq + bmp, then f(c) = f(a)1S + f(b)0S = f(a) and
g(c) = g(a)0T +g(b)1T = g(b). So f(c) =< f(a), g(b) >. Since f, g are onto S, T respectively,
we get h is onto S×T .

9A. For integers n ≥ 1, let Sn be the symmetric group on n letters, and let f(n) = the
maximum order of elements of Sn. Show

lim infn→∞
n

f(n)
= 0.

Solution:
The product of a k-cycle and a k+1-cycle in S2k+1 or S2k+2 has order k(k+1) as the cycles

have coprime orders, so for n = 2k+ 1 or n = 2k+ 2, n/f(n) is at most (2k+ 2)/k(k+ 1) ≤
2/k ≤ 4/(n− 2). This tends to 0 as n tends to infinity, so n/f(n) has limit 0 as n tends to
infinity.

1B. For integers n ≥ 1, let Pn = the set of degree ≤ n polynomials with real coefficients.
Show there is q(x) ∈ Pn such that for all p(x) ∈ Pn∫ 1

0

p(x)q(x)dx =

∫ 1

0

p(x)

x2 + 1
dx

Solution:
Pn is a vector space over the reals of dimension n+ 1.
For p(x) ∈ Pn let

T (p) =

∫ 1

0

p(x)

x2 + 1
dx

.
T is a linear map from Pn to the reals. So T is in the dual space P ∗n .
For p, q ∈ Pn let

Lp(q) =

∫ 1

0

p(x)q(x)dx

. Each Lp is in P ∗n . The map L is linear from Pn to P ∗n .
If p is in the kernel of L then

0 = Lp(p) =

∫ 1

0

p(x)p(x)dx

and so p(x) is 0 on the unit interval; since p(x) is a polynomial, p(x) = 0. Thus L is 1− 1.
Since Pn and P ∗n have the same dimension, L is onto.

Hence there is q ∈ Pn such that Lq = T .

2B. (a) Let G be a finite commutative group, and let c be the product of all elements of G.
Show that c2 = 1.
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(b) Let F be a finite field, and let c be the product of all nonzero elements in F . Show
that c = −1.

Solution: (a) Let Z ⊂ G be the subset of elements g ∈ G for which g 6= g−1 (equivalently
g2 6= 1). Then ∏

g∈Z

g = 1

since for every g ∈ Z we have g−1 ∈ Z and g−1 6= g. Therefore

c =
∏

g∈G,g2=1

g

so

c2 =
∏

g∈G,g2=1

g2 = 1.

(b) Consider the finite group F ∗. Then the set of elements g ∈ F ∗ such that g2 = 1 is
precisely the set {1,−1} since X2 − 1 = (X − 1)(X + 1). Therefore by the proof of (a) we
have c = −1.

3B. Let G be a group and H ⊂ G a subgroup of finite index n. Show that G contains a
normal subgroup N such that N ⊂ H and the index of N is ≤ n!.

4B. Let p and q be distinct primes. Show that any group G of order p2q2 is not simple.
Solution. Assume to the contrary that G is simple. Let sq (resp. sp) denote the number

of q-Sylow (resp. p-Sylow) subgroups of G. Then sq divides p2 so either sq = p or sq = p2.
Also sq ≡ 1 (mod q). Therefore either q divides p − 1 or q divides p2 − 1 = (p − 1)(p + 1).
We conclude that q divides one of p − 1 and p + 1. Similarly by symmetry we get that p
divides either q − 1 or q + 1. This implies that either q = p − 1 or q = p + 1. This implies
that (after possibly interchanging p and q) we have q = 3 and p = 2 (since both must be
prime). Therefore |G| = 36. Let S be the set of 3-Sylow subgroups. Then the group Aut(S)
has order either 2! = 2 or 4! = 24. In either case the homomorphism ρ : G→ Aut(S) given
by the conjugation action on S must have nontrivial kernel as |G| > Aut(S).

5B. Let ζ = e2πi/5 and let α = 5
√

2 ∈ R. Let E denote the subfield Q[ζ, α] ⊂ C generated by
ζ and α.

(a) Show that E is Galois over Q.
(b) What is [E : Q]?
Solution. For (a) note that

X5 − 2 =
4∏
i=0

(X − ζ iα),

which implies that E is the splitting field of X5 − 2 over Q.
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For (b) consider the diagram of fields

E

Q[ζ]

{{{{{{{{
Q[α]

CCCCCCCC

Q

BBBBBBBB

{{{{{{{{

The irreducible polynomial of ζ is X4 +X3 +X2 +X + 1 so the extension Q[ζ] has degree 4
over Q. On the other hand, the field extension Q[α] has degree 5 over Q. Since 4 and 5 are
relatively prime it follows that [E : Q] = 20.

6B. The function y(x) defined on [0,∞) is smooth and satisfies y′′ − y = f(x) in x > 0,
y(0) = 0, y′(0) = 0 and y(x) and y′(x) tend to 0 as x → ∞. Here f(x) is a continuous
function on [0,∞) which vanishes for x > 1. Find a non-zero function g(x) (not depending

on y or f) such that
∫ 1

0
f(x)g(x)dx = 0.

Solution. Multiply ODE by e−x and integrate over [0, L],∫ L

0

e−x y′′ dx−
∫ L

0

e−x y dx =

∫ L

0

e−x f(x) dx. (1)

Do two integrations by parts to the first integral on LHS, and use y(0) = 0, y′(0) = 0. When
the dust settles, (1) becomes

e−L(y′(L) + y(L)) =

∫ L

0

e−x f(x) dx. (2)

Now take L > 1. In x > 1, y′′ − y = 0 and the solutions which decay to zero as x → ∞
are proportional to e−x. Hence in LHS of (2), y′(L) + y(L) = 0 for L > 1. In RHS we can

replace L by 1 since f(x) = 0 for x > 1, so we find the condition
∫ 1

0
e−x f(x) dx = 0.

7B. Evaluate
∫∞
−∞

dx
(1+x2)5

.

Solution. Lets avoid doing residue of 5th order pole at z = i. First, for a > 0,∫ ∞
−∞

dx

a+ x2
= a−

1
2

∫ ∞
−∞

dx

1 + x2
= πa−

1
2 .

Differentiate with respect to a: ∫ ∞
−∞

dx

(a+ x2)2
=

1

2
π a−

3
2 .

Do it again three times: ∫ ∞
−∞

dx

(a+ x2)5
=

1

2

3

2

5

2

7

2
π a−

9
2 .

Now set a = 1, ∫ ∞
−∞

dx

(1 + x2)5
=

1.3.5.7

24
π.
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8B. Compute the sequence {xn}∞0 of real numbers so that xn = xn−1− 1
2
xn−2 for n ≥ 2, and

x0 = 1, x1 = 1.
Solution. Seek elementary solutions of the difference equation in the form xn = rn. Get

r2 − r + 1
2

= 0, with solutions r = 1±
√

1−2
2

= 1±i
2

. General solution of difference equation is

linear combination of
(

1+i
2

)n
and

(
1−j
2

)n
, and the linear combination with x0 = 1, x1 = 1 is

xn =

(
1 + i

2

)n
+

(
1− i

2

)n
=

(
1√
2
ei
π
4

)n
+

(
1√
2
e−i

π
4

)n
= 2−

n
2

(
ei
nπ
4 + e−i

nπ
4

)
,

or

xn = 21−n
2 as

nπ

4

Solution. Seek elementary solutions of the difference equation in the form xn = rn. Get

r2 − r + 1
2

= 0, with solutions r = 1±
√

1−2
2

= 1±i
2

. General solution of difference equation is

linear combination of
(

1+i
2

)n
and

(
1−j
2

)n
, and the linear combination with x0 = 1, x1 = 1 is

xn =

(
1 + i

2

)n
+

(
1− i

2

)n
=

(
1√
2
ei
π
4

)n
+

(
1√
2
e−i

π
4

)n
= 2−

n
2

(
ei
nπ
4 + e−i

nπ
4

)
,

or

xn = 21−n
2 as

nπ

4

9B. Compute

lim
x→0

d4

dx4

x

sinx
.

Solution: By Taylor’s formula,

sinx = x− x3

6
+

x5

120
+ o(x5).

Therefore
x

sinx
=

1

1− x2

6
+ x4

120
+ o(x4)

= 1 + (
x2

6
− x4

120
+ o(x4)) + (

x2

6
+ o(x2))2 + o(x4)

= 1 +
x2

6
+

[
1

36
− 1

120

]
x4 + o(x4).
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