SPRING 2008 PRELIMINARY EXAMINATION

1A. Prove that it is not possible to find two linear operators A and B on a non-zero finite dimensional complex vector space with AB - BA = I, where I is the identity operator. Give an example of two such operators acting on an infinite dimensional complex vector space.

Solution: $Tr(AB - BA) = 0 \neq Tr(I)$. The operators A = d/dx and B = x acting on the ring of polynomials satisfy AB - BA = I.

2A. Evaluate

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{1+x^2} dx$$

Solution. The integral is unaffected if we replace $\cos(x)$ by e^{ix} . By the residue theorem the integral is equal to $2\pi i$ times the sum of the residues in the upper half plane (as e^{ix} is small there). The only residue is at x = i, where the residue is 1/2ie. So the integral is $\pi/2e$.

3A. Find (without proof) the number of subgroups of each possible order of the symmetric group S_4 of all permutations of 4 points.

Solution: The order of the subgroup has to divide 24. Check each possible order. There is 1 (trivial) subgroup of order 1, 6 (type 2) +3 (type 2^2) of order 2, 4 of order 3 (cyclic), 3 (cyclic) +1 (normal 4-group) +3 (non-normal 4-group) of order 4, 4 of order 6 (fixing a point), 3 of order 8 (Sylow subgroups), 1 of order 12 (alternating group), and 1 of order 24 (whole group).

4A. Find the solution of the differential equation

$$y'' - 2y' + y = e^{-x}$$

satisfying y(0) = y'(0) = 0.

Solution: $y = e^{-x}/4 + ae^x + bxe^x$ is the general solution. y(0) = 0 forces a = -1/4, and y'(0) = 0 then forces b = 1/2.

5A. Suppose M is an $n \times n$ nilpotent matrix over \mathbb{C} . Show the set of matrices C(M) which commute with M is the ring $\mathbb{C}[M]$ if and only if the null space of M has dimension one. Solution.

Let $V = \mathbb{C}^n$. The ring $\mathbb{C}[M]$ is a vector space spanned by $1, M, \ldots, M^{n-1}$, because $M^{n-1} = 0$. Put M in Jordan form

$$M_1$$

۰.

1

 $(M_j \text{ is an } s_j \times s_j \text{ matrix with 0's on the diagonal and 1's on the supradiagonal}).$ The dimension of the nullspace of M is r.

Suppose $r = \dim(\text{Null}(M)) = 1$. It follows that there is a vector $v \in V$ such that $v, Mv, \ldots, M^{n-1}v$ is a basis for V. Suppose A commutes with M and $Av = \sum_{i=0}^{n-1} a_i(M^i v)$. Claim:

$$A = \sum_{i=0}^{n-1} a_i M^i.$$

Indeed,

$$A(M^{j}v) = M^{j}(Av) = \sum_{i=0}^{n-1} a_{i}(M^{i+j}v) = (\sum_{i=0}^{n-1} a_{i}M^{i})(M^{j}v),$$

and so $A \in \mathbb{C}[M]$.

On the other hand, the n matrices

 $\delta_{i1}M_1^{k_1}$

٠		
	٠	
		٠

$\delta_{ir} M_r^{k_r}$

where $1 \leq i \leq r$ and $0 \leq k_i < s_i$ are linearly independent and commute with M. It follows that if $C(M) = \mathbb{C}[M], M^{n-1} \neq 0$ so $1 = r = \dim(\text{Null}(M))$.

6A. Suppose G is a finite group with only one automorphism. Show $|G| \leq 2$. Solution:

Since $h \in G \to ghg^{-1}$ is an automorphism for $g \in G$, G must be abelian. Then $h \in G \to h^k$ is an automorphism for (k, |G|) = 1. Thus $h^k = h$ for (k, |G|) = 1. In particular, $h = h^{-1}$ for $h \in G$. Thus $G = (\mathbb{Z}/2\mathbb{Z})^r$ for some $r \ge 0$. If r > 1, $(x_1, x_2, \ldots, x_r) \to (x_2, x_1, \ldots, x_r)$ is a non-trivial automorphism. Thus $r \le 1$.

7A. Find all irreducible polynomials of degree at most 4 over the field with 2 elements.

Solution: Using the sieve of Eratosthenes we find x, x + 1 of degree 1. Therefore higher degree irreducible polynomials must have constant term 1 and sum of coefficients 1. This gives the irreducible polynomials $x^2 + x + 1$, $x^3 + x + 1$, $x^3 + x^2 + 1$ in degrees 2 and 3. In degree 4 we also have to eliminate polynomials divisible by $x^2 + x + 1$; the only extra possibility eliminated by this is $(x^2 + x + 1)^2 = x^4 + x^2 + 1$. So in degree 4 the irreducible polynomials are $x^4 + x + 1$, $x^4 + x^3 + 1$, $x^4 + x^3 + x^2 + x + 1$.

8A. Let p, q be distinct prime numbers and let R be a commutative ring with 1 of characteristic pq. Show there are rings S, T of characteristic p, q respectively, such that R is isomorphic to $S \times T$.

Solution:

p and q are relatively prime, so there are integers m, n such that 1 = mp + nq.

pR and qR are ideals of R. Let S = R/pR and T = R/qR. So in S p = 0; since R does not have characteristic $q, 1 \notin pR$ (since otherwise $q \in qpR = (0)$); thus S has characteristic exactly p. Similarly T has characteristic q.

There are onto homomorphisms $f: R \to S$ and $g: R \to T$ given by f(a) = a + pR and g(a) = a + qR. So there is a homomorphism $h: R \to S \times T$ given by $h(a) = \langle f(a), g(a) \rangle$.

If a is in the kernel of h then $a \in (pR \cap qR)$ so $a = 1a = mpa + nqa \in pqR = (0)$. Thus h is 1 - 1.

Notice $f(mp) = 0_S$ and $g(mp) = g(1 - nq) = 1_T$ while $f(nq) = f(1 - mp) = 1_S$ and $g(nq) = 0_T$. So given $a, b \in R$ let c = anq + bmp, then $f(c) = f(a)1_S + f(b)0_S = f(a)$ and $g(c) = g(a)0_T + g(b)1_T = g(b)$. So $f(c) = \langle f(a), g(b) \rangle$. Since f, g are onto S, T respectively, we get h is onto $S \times T$.

9A. For integers $n \ge 1$, let S_n be the symmetric group on n letters, and let f(n) = the maximum order of elements of S_n . Show

 $\liminf_{n \to \infty} \frac{n}{f(n)} = 0.$
Solution:

The product of a k-cycle and a k+1-cycle in S_{2k+1} or S_{2k+2} has order k(k+1) as the cycles have coprime orders, so for n = 2k + 1 or n = 2k + 2, n/f(n) is at most $(2k+2)/k(k+1) \le 2/k \le 4/(n-2)$. This tends to 0 as n tends to infinity, so n/f(n) has limit 0 as n tends to infinity.

1B. For integers $n \ge 1$, let P_n = the set of degree $\le n$ polynomials with real coefficients. Show there is $q(x) \in P_n$ such that for all $p(x) \in P_n$

$$\int_0^1 p(x)q(x)dx = \int_0^1 \frac{p(x)}{x^2 + 1}dx$$

Solution:

 P_n is a vector space over the reals of dimension n + 1. For $p(x) \in P_n$ let

$$T(p) = \int_0^1 \frac{p(x)}{x^2 + 1} dx$$

T is a linear map from P_n to the reals. So T is in the dual space P_n^* . For $p, q \in P_n$ let

$$L_p(q) = \int_0^1 p(x)q(x)dx$$

. Each L_p is in P_n^* . The map L is linear from P_n to P_n^* . If p is in the kernel of L then

$$0 = L_p(p) = \int_0^1 p(x)p(x)dx$$

and so p(x) is 0 on the unit interval; since p(x) is a polynomial, p(x) = 0. Thus L is 1 - 1. Since P_n and P_n^* have the same dimension, L is onto.

Hence there is $q \in P_n$ such that $L_q = T$.

2B. (a) Let G be a finite commutative group, and let c be the product of all elements of G. Show that $c^2 = 1$.

(b) Let F be a finite field, and let c be the product of all nonzero elements in F. Show that c = -1.

Solution: (a) Let $Z \subset G$ be the subset of elements $g \in G$ for which $g \neq g^{-1}$ (equivalently $g^2 \neq 1$). Then

$$\prod_{g \in Z} g = 1$$

since for every $g \in Z$ we have $g^{-1} \in Z$ and $g^{-1} \neq g$. Therefore

$$c = \prod_{g \in G, g^2 = 1} g$$

 \mathbf{SO}

$$c^2 = \prod_{g \in G, g^2 = 1} g^2 = 1.$$

(b) Consider the finite group F^* . Then the set of elements $g \in F^*$ such that $g^2 = 1$ is precisely the set $\{1, -1\}$ since $X^2 - 1 = (X - 1)(X + 1)$. Therefore by the proof of (a) we have c = -1.

3B. Let G be a group and $H \subset G$ a subgroup of finite index n. Show that G contains a normal subgroup N such that $N \subset H$ and the index of N is $\leq n!$.

4B. Let p and q be distinct primes. Show that any group G of order p^2q^2 is not simple.

Solution. Assume to the contrary that G is simple. Let s_q (resp. s_p) denote the number of q-Sylow (resp. p-Sylow) subgroups of G. Then s_q divides p^2 so either $s_q = p$ or $s_q = p^2$. Also $s_q \equiv 1 \pmod{q}$. Therefore either q divides p-1 or q divides $p^2-1 = (p-1)(p+1)$. We conclude that q divides one of p-1 and p+1. Similarly by symmetry we get that p divides either q-1 or q+1. This implies that either q = p-1 or q = p+1. This implies that (after possibly interchanging p and q) we have q = 3 and p = 2 (since both must be prime). Therefore |G| = 36. Let S be the set of 3-Sylow subgroups. Then the group Aut(S)has order either 2! = 2 or 4! = 24. In either case the homomorphism $\rho : G \to Aut(S)$ given by the conjugation action on S must have nontrivial kernel as |G| > Aut(S).

5B. Let $\zeta = e^{2\pi i/5}$ and let $\alpha = \sqrt[5]{2} \in \mathbb{R}$. Let *E* denote the subfield $\mathbb{Q}[\zeta, \alpha] \subset \mathbb{C}$ generated by ζ and α .

- (a) Show that E is Galois over \mathbb{Q} .
- (b) What is $[E:\mathbb{Q}]$?

Solution. For (a) note that

$$X^{5} - 2 = \prod_{i=0}^{4} (X - \zeta^{i} \alpha),$$

which implies that E is the splitting field of $X^5 - 2$ over \mathbb{Q} .

For (b) consider the diagram of fields

The irreducible polynomial of ζ is $X^4 + X^3 + X^2 + X + 1$ so the extension $\mathbb{Q}[\zeta]$ has degree 4 over \mathbb{Q} . On the other hand, the field extension $\mathbb{Q}[\alpha]$ has degree 5 over \mathbb{Q} . Since 4 and 5 are relatively prime it follows that $[E : \mathbb{Q}] = 20$.

6B. The function y(x) defined on $[0,\infty)$ is smooth and satisfies y'' - y = f(x) in x > 0, y(0) = 0, y'(0) = 0 and y(x) and y'(x) tend to 0 as $x \to \infty$. Here f(x) is a continuous function on $[0,\infty)$ which vanishes for x > 1. Find a non-zero function g(x) (not depending on y or f) such that $\int_0^1 f(x)g(x)dx = 0$. Solution. Multiply ODE by e^{-x} and integrate over [0, L],

$$\int_0^L e^{-x} y'' \, dx - \int_0^L e^{-x} y \, dx = \int_0^L e^{-x} f(x) \, dx. \tag{1}$$

Do two integrations by parts to the first integral on LHS, and use y(0) = 0, y'(0) = 0. When the dust settles, (1) becomes

$$e^{-L}(y'(L) + y(L)) = \int_0^L e^{-x} f(x) \, dx.$$
(2)

Now take L > 1. In x > 1, y'' - y = 0 and the solutions which decay to zero as $x \to \infty$ are proportional to e^{-x} . Hence in LHS of (2), y'(L) + y(L) = 0 for L > 1. In RHS we can replace L by 1 since f(x) = 0 for x > 1, so we find the condition $\int_0^1 e^{-x} f(x) dx = 0$.

7B. Evaluate $\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^5}$.

Solution. Let's avoid doing residue of 5th order pole at z = i. First, for a > 0,

$$\int_{-\infty}^{\infty} \frac{dx}{a+x^2} = a^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \pi a^{-\frac{1}{2}}.$$

Differentiate with respect to a:

$$\int_{-\infty}^{\infty} \frac{dx}{(a+x^2)^2} = \frac{1}{2}\pi \ a^{-\frac{3}{2}}.$$

Do it again three times:

$$\int_{-\infty}^{\infty} \frac{dx}{(a+x^2)^5} = \frac{1}{2} \frac{3}{2} \frac{5}{2} \frac{7}{2} \pi \ a^{-\frac{9}{2}}.$$

Now set a = 1,

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^5} = \frac{1.3.5.7}{2^4} \pi.$$

8B. Compute the sequence $\{x_n\}_0^\infty$ of real numbers so that $x_n = x_{n-1} - \frac{1}{2}x_{n-2}$ for $n \ge 2$, and $x_0 = 1, x_1 = 1.$

Solution. Seek elementary solutions of the difference equation in the form $x_n = r^n$. Get $r^2 - r + \frac{1}{2} = 0$, with solutions $r = \frac{1 \pm \sqrt{1-2}}{2} = \frac{1 \pm i}{2}$. General solution of difference equation is linear combination of $\left(\frac{1+i}{2}\right)^n$ and $\left(\frac{1-j}{2}\right)^n$, and the linear combination with $x_0 = 1$, $x_1 = 1$ is

$$x_n = \left(\frac{1+i}{2}\right)^n + \left(\frac{1-i}{2}\right)^n = \left(\frac{1}{\sqrt{2}}e^{i\frac{\pi}{4}}\right)^n + \left(\frac{1}{\sqrt{2}}e^{-i\frac{\pi}{4}}\right)^n = 2^{-\frac{n}{2}}\left(e^{i\frac{n\pi}{4}} + e^{-i\frac{n\pi}{4}}\right)$$

Solution. Seek elementary solutions of the difference equation in the form $x_n = r^n$. Get $r^2 - r + \frac{1}{2} = 0$, with solutions $r = \frac{1 \pm \sqrt{1-2}}{2} = \frac{1 \pm i}{2}$. General solution of difference equation is linear combination of $\left(\frac{1+i}{2}\right)^n$ and $\left(\frac{1-j}{2}\right)^n$, and the linear combination with $x_0 = 1$, $x_1 = 1$ is

$$x_n = \left(\frac{1+i}{2}\right)^n + \left(\frac{1-i}{2}\right)^n = \left(\frac{1}{\sqrt{2}}e^{i\frac{\pi}{4}}\right)^n + \left(\frac{1}{\sqrt{2}}e^{-i\frac{\pi}{4}}\right)^n = 2^{-\frac{n}{2}}\left(e^{i\frac{n\pi}{4}} + e^{-i\frac{n\pi}{4}}\right),$$
$$x_n = 2^{1-\frac{n}{2}} \text{ as } \frac{n\pi}{4}$$

or

or

$$x_n = 2^{1-\frac{n}{2}}$$
 as $\frac{n\pi}{4}$

9B. Compute

$$\lim_{x \to 0} \frac{d^4}{dx^4} \frac{x}{\sin x}.$$

Solution: By Taylor's formula,

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5).$$

Therefore

$$\frac{x}{\sin x} = \frac{1}{1 - \frac{x^2}{6} + \frac{x^4}{120} + o(x^4)}$$
$$= 1 + \left(\frac{x^2}{6} - \frac{x^4}{120} + o(x^4)\right) + \left(\frac{x^2}{6} + o(x^2)\right)^2 + o(x^4)$$
$$= 1 + \frac{x^2}{6} + \left[\frac{1}{36} - \frac{1}{120}\right]x^4 + o(x^4).$$