SPRING 2008 PRELIMINARY EXAMINATION

1A. Prove that it is not possible to find two linear operators A and B on a non-zero finite
dimensional complex vector space with AB— BA = I, where [ is the identity operator. Give
an example of two such operators acting on an infinite dimensional complex vector space.

Solution: Tr(AB — BA) =0 # Tr(I). The operators A = d/dx and B = x acting on the
ring of polynomials satisfy AB — BA = 1.

/+°° cos(x) i

1+ 22
o0
Solution. The integral is unaffected if we replace cos(x) by e®®. By the residue theorem
the integral is equal to 27 times the sum of the residues in the upper half plane (as ¢ is

small there). The only residue is at © = i, where the residue is 1/2ie. So the integral is
7/ 2e.

2A. Evaluate

3A. Find (without proof) the number of subgroups of each possible order of the symmetric
group Sy of all permutations of 4 points.

Solution: The order of the subgroup has to divide 24. Check each possible order. There
is 1 (trivial) subgroup of order 1, 6 (type 2) +3 (type 22) of order 2, 4 of order 3 (cyclic),
3 (cyclic) +1 (normal 4-group) +3 (non-normal 4-group) of order 4, 4 of order 6 (fixing a
point), 3 of order 8 (Sylow subgroups), 1 of order 12 (alternating group), and 1 of order 24
(whole group).

4A. Find the solution of the differential equation
y// . 2y/ _I_y — e—a:
satisfying y(0) = ¢/(0) = 0.
Solution: y = e~ */4 + ae® 4 bxe” is the general solution. y(0) = 0 forces a = —1/4, and
y'(0) = 0 then forces b = 1/2.

5A. Suppose M is an n x n nilpotent matrix over C. Show the set of matrices C'(M) which
commute with M is the ring C[M] if and only if the null space of M has dimension one.
Solution.
Let V = C". The ring C[M] is a vector space spanned by 1, M, ..., M"! because
M™ ! =0. Put M in Jordan form

M,



(M; is an s; x s; matrix with 0’s on the diagonal and 1’s on the supradiagonal). The
dimension of the nullspace of M is r.

Suppose r = dim(Null (M)) = 1. It follows that there is a vector v € V such that
v, Mv,..., M™ v is a basis for V. Suppose A commutes with M and Av = 31" a;(Mv).

Claim:
n—1
i=0
Indeed,
n—1 n—1
A(MIv) = M7 (Av) = " a;(M™v) = (O a; M) (M),
=0 =0

and so A € C[M].
On the other hand, the n matrices

;i1 M

(5Z‘TM7{€T

where 1 <7 <r and 0 < k; < s; are linearly independent and commute with M. It follows
that if C(M) = C[M], M™ ' #0so 1 =r = dim(Null (M)).

6A. Suppose G is a finite group with only one automorphism. Show |G| < 2.

Solution:

Since h € G — ghg~ " is an automorphism for ¢ € G, G must be abelian. Then h € G — h*
is an automorphism for (k,|G|) = 1. Thus h* = h for (k,|G|) = 1. In particular, h = h~!
for h € G. Thus G = (Z/2Z)" for some r > 0. If r > 1, (21, 29,...,2,) — (T2, 21,...,2,) I8
a non-trivial automorphism. Thus r» < 1.

7A. Find all irreducible polynomials of degree at most 4 over the field with 2 elements.

Solution: Using the sieve of Eratosthenes we find x, x 4+ 1 of degree 1. Therefore higher
degree irreducible polynomials must have constant term 1 and sum of coefficients 1. This
gives the irreducible polynomials 2% + x + 1, 23 + 2 + 1, 23 + 22 + 1 in degrees 2 and 3.
In degree 4 we also have to eliminate polynomials divisible by 22 4+ x + 1; the only extra
possibility eliminated by this is (22 + 2 + 1)? = 2% + 22 + 1. So in degree 4 the irreducible
polynomials are z* + z + 1, z* + 2* + |, 2* + * + 22 + v + 1.

8A. Let p, ¢ be distinct prime numbers and let R be a commutative ring with 1 of char-
acteristic pg. Show there are rings S, T' of characteristic p, ¢ respectively, such that R is
isomorphic to SxT.

Solution:

p and ¢ are relatively prime, so there are integers m,n such that 1 = mp + ngq.
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pR and gR are ideals of R. Let S = R/pR and T'= R/qR. So in S p = 0; since R does
not have characteristic ¢, 1 € pR (since otherwise ¢ € gpR = (0)); thus S has characteristic
exactly p. Similarly 7" has characteristic gq.

There are onto homomorphisms f: R — S and g : R — T given by f(a) = a + pR and
g(a) = a+ qR. So there is a homomorphism h : R — SxT given by h(a) =< f(a),g(a) >.

If a is in the kernel of h then a € (pRN¢R) so a = la = mpa + nqa € pgR = (0). Thus h
is1—1.

Notice f(mp) = 0g and g(mp) = g(1 — ng) = 1y while f(ng) = f(1 — mp) = 1g and
g(ng) = O0r. So given a,b € R let ¢ = ang + bmp, then f(c) = f(a)ls + f(b)0s = f(a) and
g(c) = g(a)0r+g(b)1r = g(b). So f(c) =< f(a),g(b) >. Since f, g are onto S, T respectively,
we get h is onto SxT.

9A. For integers n > 1, let S,, be the symmetric group on n letters, and let f(n) = the
maximum order of elements of .S,,. Show

liminf, % = 0.

Solution:

The product of a k-cycle and a k4 1-cycle in Sogyq or Sopyo has order k(k+1) as the cycles
have coprime orders, so for n = 2k+1 or n = 2k +2, n/f(n) is at most (2k+2)/k(k+1) <
2/k < 4/(n — 2). This tends to 0 as n tends to infinity, so n/f(n) has limit 0 as n tends to

infinity.

1B. For integers n > 1, let P, = the set of degree < n polynomials with real coefficients.
Show there is g(z) € P, such that for all p(z) € P,

1 1
[ p@)
/0 p(:r)q(:n)d:r—/o x2+1d9§
Solution:

P, is a vector space over the reals of dimension n + 1.

For p(z) € P, let
1
_ [ px)
T(p)—/O $2+1dx

T is a linear map from P, to the reals. So 7" is in the dual space P;.
For p,q € P, let

Ly(g) = / ple)q()dz

. Each L, is in P;. The map L is linear from P, to P;.
If p is in the kernel of L then

and so p(x) is 0 on the unit interval; since p(x) is a polynomial, p(z) = 0. Thus L is 1 — 1.
Since P, and P; have the same dimension, L is onto.
Hence there is ¢ € P, such that L, =T

2B. (a) Let G be a finite commutative group, and let ¢ be the product of all elements of G.
Show that ¢? = 1.
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(b) Let F' be a finite field, and let ¢ be the product of all nonzero elements in F. Show
that ¢ = —1.
Solution: (a) Let Z C G be the subset of elements g € G for which g # ¢g~! (equivalently

g* #1). Then
[[o=1

g€eZ

since for every g € Z we have g~ € Z and g~! # g. Therefore

SO

(b) Consider the finite group F*. Then the set of elements g € F™* such that ¢g> = 1 is
precisely the set {1,—1} since X? — 1 = (X — 1)(X + 1). Therefore by the proof of (a) we
have ¢ = —1.

3B. Let G be a group and H C G a subgroup of finite index n. Show that G contains a
normal subgroup N such that N C H and the index of N is < nl.

4B. Let p and ¢ be distinct primes. Show that any group G of order p?¢? is not simple.

Solution. Assume to the contrary that G is simple. Let s, (resp. s,) denote the number
of g-Sylow (resp. p-Sylow) subgroups of G. Then s, divides p* so either s, = p or s, = p*.
Also s, =1 (mod g). Therefore either ¢ divides p — 1 or ¢ divides p? — 1= (p — 1)(p + 1).
We conclude that ¢ divides one of p — 1 and p + 1. Similarly by symmetry we get that p
divides either ¢ — 1 or ¢ + 1. This implies that either ¢ = p — 1 or ¢ = p + 1. This implies
that (after possibly interchanging p and ¢) we have ¢ = 3 and p = 2 (since both must be
prime). Therefore |G| = 36. Let S be the set of 3-Sylow subgroups. Then the group Aut(S)
has order either 2! = 2 or 4! = 24. In either case the homomorphism p : G — Aut(S) given
by the conjugation action on S must have nontrivial kernel as |G| > Aut(S).

5B. Let ¢ = ¢>™/% and let a = v/2 € R. Let E denote the subfield Q[¢, o] C C generated by
¢ and a.

(a) Show that E is Galois over Q.

(b) What is [E : Q]?

Solution. For (a) note that

4

X*—2=1[(X = (),

=0

which implies that E is the splitting field of X® — 2 over Q.
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For (b) consider the diagram of fields

/\
\/

The irreducible polynomial of ¢ is X%+ X3+ X2 + X + 1 so the extension Q[(] has degree 4
over Q. On the other hand, the field extension Q[a] has degree 5 over Q. Since 4 and 5 are
relatively prime it follows that [E : Q] = 20.

6B. The function y(x) defined on [0, 00) is smooth and satisfies ¥ —y = f(z) in x > 0,
y(0) = 0, ¥'(0) = 0 and y(x) and y'(x) tend to 0 as  — oo. Here f(z) is a continuous
function on [0, co) which vanishes for # > 1. Find a non-zero function g(z) (not depending
on y or f) such that fol f(x)g(x)dx = 0.

Solution. Multiply ODE by e~* and integrate over [0, L],

L L L
/ e y" dx — / e’ ydr = / e f(x) d. (1)
0 0 0

Do two integrations by parts to the first integral on LHS, and use y(0) = 0, 4/(0) = 0. When
the dust settles, (1) becomes

ey (L) + (L)) = / e f(x) d. 2)

Now take L > 1. In x > 1, y” — y = 0 and the solutions which decay to zero as r — oo
are proportional to e”*. Hence in LHS of (2), /(L) + y(L) = 0 for L > 1. In RHS we can

replace L by 1 since f(z) =0 for z > 1, so we find the condition fol e ™ f(x) de =0.

7B. Evaluate f (14:1—;62)

Solution. Lets avoid doing residue of 5th order pole at z = i. First, for a > 0,
/ < dx _ / < dx 1
=a =ma” 2.
oo O+ 22 oo L+ 22

Differentiate with respect to a:
/Oo dI 1 7%
—— = -7 a 2.
oo @+ 22)2 2

/°° dz 1357
—— = -7 a 2.
o (ata?p 22227

NI=

Do it again three times:

Now set a =1,

/°° dx _ 1.3.5.7
) C R TR
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8B. Compute the sequence {x,}3° of real numbers so that z,, = x,_1 — %xn_Q for n > 2, and
To = 1, T = 1.

Solution. Seek elementary solutions of the difference equation in the form z,, = r". Get
r?—r+ % = 0, with solutions r = %ﬁ = lTﬂ General solution of difference equation is
linear combination of (%)n and (1%])”, and the linear combination with xo =1, 1 = 1 is

Ty = = | —=e —=€ = e e 5
2 2 V2 V2

n

_ nm
x, =272 as —
4

INE
|

\)

or

Solution. Seek elementary solutions of the difference equation in the form z, = r". Get
r?—r+ % = 0, with solutions r = 1E=2 — % General solution of difference equation is

2
%)n and (1%])”, and the linear combination with o =1, zy = 1 is

e () G )

_n
x, =272 as —

4

linear combination of (

INE

_n Py _jnm
2 2(6 i +e 4),

or

9B. Compute
i d* z
im — .
z—0 dx? sin x

Solution: By Taylor’s formula,

i L o)
11 = _ — —_— .
sing =z — = + 5o+ ol
Therefore
r 1
sin 1_%+f—;)+0(3;4)
P o) + (S o)) + ola)
= I 4 o(x o(x
6 120 6
x? 1 1
-1 - - 4 4
+ G + [36 120]:)& + o(x")



