
Problem 1A.

A non-empty metric space X is said to be connected if it is not the union of two non-empty
disjoint open subsets, and is said to be path-connected if for every two points a, b there is a
continuous map f from the unit interval to X with f(0) = a, f(1) = b.

(a) Prove that every path-connected space is connected.
(b) If X is the subset of the plane consisting of the points (x, y) with x = 0 or x > 0, y =

sin(1/x) show that X is connected but not path-connected.

Solution:
(a) If a space X is not connected, it is the union of 2 disjoint open subsets A and

B.Choose a in A and b in B. Then for any continuous map f from the unit interval to X
with f(0) = a, f(1) = b the inverse images of A and B give a partition of the unit interval
into 2 disjoint nonempty open subsets. This is not possible, as the supremum of one of the
open subsets cannot be in either.

(b) This space is the union of the y axis A and the graph B of y = sin(1/x) both of which
are connected. So the only possible partition into 2 disjoint nonempty open subsets is A
union B, which is not possible as A and B are not open subsets. So the space is connected.
To show it is not path connected, take any map from the unit interval to it with f(0) in
the y axis. Let x be the supremum of points whose image is in the y axis. For a small
neighborhood of f(x) the largest connected subset containing f(x) is in the y axis, so some
neighborhood of x must have image in the y axis. This forces x to be 1 otherwise there are
points above it whose image is not in the y-axis. So there are no maps of the unit interval
to X with f(0) in the y axis and f(1) not, so the space is not path connected.
Problem 2A.

Find an irreducible polynomial over the integers with 2 cos(2π/7) as a root, and use this to
show that it is not contained in any extension of the rational numbers of degree a power of
2.

Solution:
Write x = 2 cos(2π/7) = z + 1/z with z7 = 1, z 6= 1. Then x3 + x2 − 2x − 1 =

z−3 + z−2 + z−1 + 1 + z+ z2 + z3 = 0. This polynomial is irreducible as it is irreducible mod
2. So x generates a field extension of degree 3, so any field containing x has degree divisible
by 3, so the degree cannot be a power of 2.
Problem 3A.

Use residues to compute ∫ ∞
0

dx

x4 + 1
.



Solution: This is half of
∫∞
−∞

dx
x4+1

, and therefore πi times the sum of residues in the upper
half plane (using the usual semicircular contour and the residue theorem). The residues are
at (i± 1)/

√
2 and have values 1/4(i± 1) so their sum is −

√
2i/4. The integral is therefore

π/2
√

2.
Problem 4A.

Let Mn(k) be the n by n matrices over a field k. Find (with proof) all linear maps f from
Mn(k) to k such that f(AB) = f(BA) for all matrices A and B.

Solution:
Taking commutators AB−BA of suitable matrices A and B each with just one nonzero

entry shows that any matrix with just one nonzero entry off the diagonal, or with 2 nonzero
entries on the diagonal with sum zero, is of this form. In other words all matrices of trace
zero are linear combinations of matrices of the form AB − BA. Any matrix AB − BA has
image 0 under f . So the linear maps are just those that vanish on all matrices of trace 0,
and so are multiples of the trace.
Problem 5A.

Show that the function equal to e−1/x2
for x 6= 0 and equal to 0 at x = 0 is infinitely

differentiable at all real numbers, and find its Taylor series at x = 0.

Solution: By induction any higher derivative is (polynomial in 1/x)e−1/x2
for x 6= 0. This

has limit 0 at x = 0. So all higher derivatives exist and are all 0 at 0. The Taylor series at
0 is therefore 0 + 0x+ 0x2 + ....
Problem 6A.

If N is the integer 24 · 33 · 52 · 7 find the smallest positive integer m such that xm ≡ 1 mod N
for all integers x coprime to N .

Solution:
By the Chinese remainder theorem Z/(mnZ) is Z/(mZ)× Z/(nZ) for m,n coprime, so

it is enough to solve this question for prime powers. If N is 24 or 33 or 52 or 7 then the
smallest m as above is 4, 2×32, 4×5, and 6 respectively. So the solution is the least common
multiple of these, which is m = 22 × 32 × 5 = 180.
Problem 7A.

If 0 < r < 1, find
∞∑
k=0

rk cos(kθ).

Your final answer should not involve any complex numbers.

Solution:



Put z = reiθ. It’s enough to find the real part of

∞∑
k=0

zk =
1

1− z
=

1

1− reiθ
1− re−iθ

1− re−iθ
=

1− r cos(θ) + ir sin(θ)

1− 2r cos(θ) + r2
,

so the answer is
1− r cos(θ)

1− 2r cos(θ) + r2
.

Problem 8A.

For each of the following 4 statements, give either a counterexample or a reason why it is
true.

(a) For every real matrix A there is a real matrix B with B−1AB diagonal.
(b) For every symmetric real matrix A there is a real matrix B with B−1AB diagonal.
(c) For every complex matrix A there is a complex matrix B with B−1AB diagonal.
(d) For every symmetric complex matrix A there is a complex matrix B with B−1AB

diagonal.

Solution:
To generate conterexamples, observe that a nonzero 2 by 2 matrix with trace and deter-

minant 0 cannot be diagonalizable as both eigenvalues vanish.
(a) False

(
0 1
0 0

)
(b) True as Hermitean matrices are diagonalizable
(c) False

(
0 1
0 0

)
(d) False

(
1 i
i −1

)
Problem 9A.

The Catalan numbers C(n) satisfy C(0) = 1, C(n) = C(0)C(n− 1) +C(1)C(n− 2) + · · ·+
C(n− 1)C(0) if n > 0. Find the function

∑∞
n=0C(n)xn and use this to evaluate C(n).

Solution: If f(x) =
∑∞

n=0C(n)xn then xf(x)2 + 1 = f(x) so f(x) = (1 −
√

1− 4x)/2x.

Expanding this by the binomial series shows that C(n) = (2n)!
n!(n+1)!

.
Problem 1B.

Let D be an open subset of R2 (with the topology induced by the euclidean metric), and
assume that it contains the closed unit square

[0, 1]× [0, 1] = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} .

Show that D contains the partially-open rectangle

[0, 1]× [0, 1 + ε) = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y < 1 + ε}

for some ε > 0.



Solution: For each x ∈ [0, 1], we have (x, 1) ∈ D, so there is an ε(x) > 0 such that
B2ε(x)(x, 1) ⊆ D (here Br(P ) denotes the open ball of radius r centered at the point P ).
Therefore the open square with corners (x± ε(x), 1± ε(x)) is also contained in D.

As x varies over [0, 1], the open sets (x − ε(x), x + ε(x)) cover the compact set [0, 1], so
there is a finite subcollection {(xi − ε(xi), xi + ε(xi)) : i = 1, . . . , n} that covers [0, 1]. Let ε
be the smallest of ε(x1), . . . , ε(xn). Then D contains the set [0, 1]× [0, 1 + ε).
Problem 2B.

Prove that every group is isomorphic to a group of permutations. Prove that every finite
group is isomorphic to a group of even permutations of a finite set.

Solution: Let G be a finite group, and let SG denote the group of permutations of G.
For each g ∈ G define σg G → G by σg(x) = gx. This function is one-to-one because
gx = gy implies x = y by cancellation, and it is onto because it is one-to-one and G is
a finite set. Therefore σg lies in SG for all g. This is a group homomorphism G → SG
because σg(σh(x)) = ghx = σgh(x) for all x, so σg ◦ σh = σgh for all g, h ∈ G. This group
homomorphism is injective because if σg lies in the kernel then σg(e) = e (where e ∈ G
denotes the identity element); however, σg(e) = ge = g, implying g = e and therefore the
kernel is trivial. Thus this homomorphism is an isomorphism of G with a subgroup of the
permutation group SG.

To get G isomorphic to a group of even permutations, do the same procedure to show
that G is isomorphic to a subgroup of even permutations of S2G, where 2G denotes the
disjoint union of G with itself.
Problem 3B.

Prove that there are infinitely many complex numbers z with ez = z. (Hint: consider the
behavior of ez − z on the boundary of a large square.)

Solution: Consider the change of argument of ez = z on a large square of side 2R centered
at 0. The change of argument on the left hand edge and the top and bottom is bounded as
R tends to infinity by easy estimates. The change of argument on the right hand edge is
about that of ez which increases linearly with R. So up to a bounded term, the total change
in argument increases linearly with R. As the number of zeros is (change in agument)/2π,
the function has an infinite number of zeros.
Problem 4B.

For which real numbers x does the matrix-valued series Σ∞n=0x
nAn converge, where A is the

matrix
(

0 1
1 1

)
?

Solution: The matrix has eigenvalues (1±
√

5)/2. Diagonalizing the matrix shows that the
series converges for |x| less than the inverse of the absolute value of the largest eigenvalue,
so for |x| < (−1 +

√
5)/2.



Problem 5B.

(a) Evaluate I(n) =
∫ π

0
sin(x)ndx for n a non-negative integer.

(b) Prove that I(n) > I(n+ 1) > 0
(c) Evaluate the infinite product 1

2
× 3

2
× 3

4
× 5

4
× 5

6
× · · · .

Solution: (a) I(0) = π, I(1) = 2. Integration by parts gives I(n) =
∫ π

0
(n−1) sin(x)n−2 cos(x) cos(x)dx =

(n − 1)(I(n − 2) − I(n) so I(n) = n−1
n
I(n − 2). So I(2n) = π 1

2
3
4
· · · 2n−1

2n
and I(2n + 1) =

22
3

4
5
· · · 2n

2n+1
.

(b) Follows because sin(x)n > sin(x)n+1 > 0.

(c) The product of 2n − 1 terms of the product is I(2n)/π
I(2n−1)/2

which is less than 2/π and

the product of 2n terms is I(2n)/π
I(2n+1)/2

which is greater then 2/π. As the product converges by

the “alternating product test” it is 2/π.
Problem 6B.

Prove that the polynomial x4 + x+ 2011 is irreducible over Q.

Solution:
It is sufficient to check irreducibility in Z[x] and for this it is enough to check irreducibility

mod 2. For this just check it has no linear factors and is not divisible by the only irreducible
degree 2 mod 2 polynomial x2 + x+ 1.
Problem 7B.

Prove that the real and imaginary parts of a holomorphic complex function are harmonic
(solutions of Laplace’s equation ∂2f

∂x2 + ∂2f
∂y2

= 0). Find two linearly independent real solutions
of Laplace’s equation in two variables that are homogeneous polynomials of degree 6.

Solution:
The fact that the real and imaginary parts are harmonic follows easily from the Cauchy-

Riemann equations. Two homogeneous harmonic polynomials of degree 6 are the real and
imaginary parts of (x+ iy)6 which are x6 − 15x4y2 + 15x2y4 − y6 and 6xy5 − 20x3y3 + 6x5y.
Problem 8B.

For p a prime show that the number of non-singular n×n matrices with entries in the field
with p elements has the form prs where s ≡ (−1)n (mod p), and find r.

Solution:
The number of nonsingular matrices is the number of bases which is (pn−1)(pn−p)...(pn−

pn−1) (product of number of ways to choose first, second, ...n’th basis vectors). So r =
0 + 1 + . . . (n− 1) = (n− 1)n/2 and s = (pn − 1)(pn−1 − 1)...(p− 1) is congruent to (−1)n

(mod p).
Problem 9B.



For each of the following statements, either prove it or give a counterexample:
(a) If f(x) and fn(x) are continuous real-valued functions on the unit interval, and

limn→∞ fn(x) = f(x) for all x, then limn→∞
∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dx.

(b) If g(m,n) is real for all integersm,n, and
∑∞

m=0(
∑∞

n=0 g(m,n)) and
∑∞

n=0(
∑∞

m=0 g(m,n))
are both defined, then they are equal.

(c) If the functions hn(x) are continuous real-valued functions on the unit interval, and
limn→∞ hn(x) = h(x) for all x, then h(x) is a continuous function of x.

Solution:
(a) False. Take fn to be 0 for x ≥ 1/n and x = 0 and to have integral 1. Then f = 0

does not have integral 1.
(b) False. Take g(m,n) to be 1 if m = n, −1 if m = n+ 1, 0 otherwise.
(c) False. Take hn to be 1 at 0, 0 at 1/n, 0 at 1, and linear between these points. Then

h is 1 at 0 and 0 elsewhere so is not continuous.


